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DETERMINE THERE ARE P
NUMBER OF PROCESSOR CORES
INACPU

3702

DETERMINE THERE ARE M
NUMBER OF MEMORY CHANNELS
USED BY THE CPU TO
COMMUNICATE WITH A PLURALITY
OF MEMORY MODULES

3704

SELECT A GROUP OF M NUMBER
OF THE P PROCESSOR CORES
3706

ASSIGN EACH OF THE CORES IN
THE GROUP TO COMMUNICATE,

VIA A RESPECTIVE ONE OF THE

MEMORY CHANNELS, WITH AT

LEAST ONE PROCESSOR

DISPOSED ON THE AT LEAST ONE
OF MEMORY MODULES
CONNECTED TO EACH OF THE M
NUMBER OF MEMORY CHANNELS
3708

FIGURE 37
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DETERMINE THAT M NUMBER OF
MEMORY CHANNELS CONNECT TO
AT LEAST ONE MEMORY MODULE
HAVING A PROCESSOR DISPOSED
ON THE AT LEAST ONE MEMORY
MODULE
3802

ASSIGN, TO EACH OF THE M
MEMORY CHANNELS, ONE
PROCESSOR CORE TO
COMMUNICATE WITH THE
PROCESSOR DISPOSED ON THE
AT LEAST ONE MEMORY MODULE
3804

FIGURE 38
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MEMORY MODULE INCLUDING THE
PROCESSOR
4202
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MEMORY LOCATION FROM A CPU
4204

IN RESPONSE TO A READ OF THE
MEMORY LOCATION, SEND AN
INDICATOR OF THE REQUEST FOR
THE RESOURCE
4206

RECEIVE, FROM THE CPU, A WRITE
TO A MEMORY LOCATION THAT
INDICATES A GRANT OF THE
REQUEST FOR A RESOURCE
4208
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METHODS AND SYSTEMS FOR MAPPING A
PERIPHERAL FUNCTION ONTO A LEGACY
MEMORY INTERFACE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 14/574,156 filed 17 Dec. 2014 titled METHODS AND
SYSTEMS FOR MAPPING A PERIPHERAL FUNCTION
ONTO A LEGACY MEMORY INTERFACE, which is a
continuation of U.S. application Ser. No. 14/064,167 filed 27
Oct. 2013 titled COMMUNICATION VIA A MEMORY
INTERFACE, which is a continuation-in-part of Interna-
tional Application PCT/US12/52052, filed Aug. 23, 2012,
and titled METHODS AND SYSTEMS FOR MAPPING A
PERIPHERAL FUNCTION ONTO A LEGACY MEMORY
INTERFACE, which claims the benefit of U.S. Provisional
Application Ser. No. 61/526,953, filed Aug. 24, 2011, and
titted METHODS AND SYSTEMS FOR MAPPING A
PERIPHERAL FUNCTION ONTO A LEGACY MEMORY
INTERFACE, and claims the benefit U.S. Provisional Appli-
cation Ser. No. 61/647,986, filed May 16, 2012, and titled
METHODS AND SYSTEMS FOR MAPPING A PERIPH-
ERAL FUNCTION ONTO A LEGACY MEMORY INTER-
FACE, and claims the benefit U.S. Provisional Application
Ser. No. 61/670,874, filed Jul. 12, 2012, and titled METH-
ODS AND SYSTEMS FOR MAPPING A PERIPHERAL
FUNCTION ONTO A LEGACY MEMORY INTERFACE,
and claims the benefit U.S. Provisional Application Ser. No.
61/691,134, filed Aug. 20, 2012, and titled METHODS AND
SYSTEMS FOR MAPPING A PERIPHERAL FUNCTION
ONTO A LEGACY MEMORY INTERFACE, all of which
are hereby incorporated herein by reference for all purposes.
U.S. application Ser. No. 14/064,167 is also a continuation in
part of, and claims the benefit of, International Application
PCT/US12/52000, filed Aug. 23,2012, and titled METHODS
AND SYSTEMS FOR MAPPING A PERIPHERAL FUNC-
TION ONTO A LEGACY MEMORY INTERFACE, and
claims the benefit of International Application PCT/US12/
52043, filed Aug. 23,2012, and titled METHODS AND SYS-
TEMS FOR MAPPING A PERIPHERAIL, FUNCTION
ONTO ALEGACY MEMORY INTERFACE, and claims the
benefit of International Application PCT/US12/52059, filed
Aug. 23,2012, and titled METHODS AND SYSTEMS FOR
MAPPING A PERIPHERAL FUNCTION ONTO A
LEGACY MEMORY INTERFACE, all of which are hereby
incorporated herein by reference for all purposes.

TECHNICAL FIELD

The present invention relates to memory systems and, in
particular, to scalable memory systems that support parallel
processing.

BACKGROUND

Personal computers commonly include a central process-
ing unit (CPU) that executes instructions and stores data in
main memory. The main memory is typically provided as one
or more printed-circuit boards, each supporting integrated-
circuit (IC) memory devices and coupled to the CPU via one
or more main-memory buses. Specialized functions, such as
graphics processing, can be passed to a separate card on a
separate “expansion” bus. In a typical example, a CPU can
assign resource-intensive graphics processes to a dedicated
graphics card. Such systems improve overall performance,
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but are expensive and may not allocate communication
resources efficiently. For example, relatively graphics-inten-
sive processes may overwhelm the expansion bus, whereas
less graphics-intensive processes may leave this resource
underutilized.

U.S. Pat. No. 6,864,896 to Richard E. Perego details an
improved computer architecture in which peripheral func-
tionality is provided by “computing engines” located with the
memory ICs on the main-memory modules. The computing
engines can share main memory, which allows for more effi-
cient memory allocation between the CPU and the peripheral
engines, and communication bandwidth can be optimized
over the common main-memory buses. These improvements
can improve performance, save costs, or both.

BRIEF DESCRIPTION OF THE FIGURES

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and in which like reference numerals refer to similar
elements and in which:

FIG. 1 depicts a memory system 100 in accordance with
one embodiment. System 100 includes a CPU 105 that com-
municates data DQ and command and addresses CA with a
memory module 110 via a main-memory interface 115.

FIG. 2 depicts an exemplary address space 200 for an eight
gigabyte (8 GB) memory module in accordance with one
embodiment.

FIG. 3A is a flowchart 300 illustrating a method of assign-
ing a base address OPBA for peripheral interface 140 of FIG.
1 in accordance with one embodiment.

FIG. 3B is a flowchart 340 illustrating a method of assign-
ing a base address OPBA for peripheral interface 140 of FIG.
1 in accordance with an embodiment in which controller 144
scrambles write data.

FIG. 4 is a flowchart 400 illustrating how memory module
110 of FIG. 1 manages OS requests from CPU 105 for access
to main memory 120 and support from peripheral processor
135 in accordance with one embodiment.

FIG. 5 illustrates a data structure 500 that peripheral driver
146 assembles and stores in cache 142 to convey commands
and data to the OPBA command port in accordance with one
embodiment.

FIG. 6 shows how the contents of read-data queue 168 may
be arranged in accordance with one embodiment.

FIG. 7 depicts a memory system 700 in accordance with a
multi-module embodiment.

FIG. 8 graphically depicts three apertures A, B, and C, one
for each of the like-identified slot groups in FIG. 7.

FIG. 9 depicts the three apertures A, B, and C of FIG. 8 in
more detail.

FIG. 10 illustrates a data structure 1000 that peripheral
driver 146 assembles and stores in cache 142 to convey com-
mands and data to the OPBA command ports in each of the
four modules 110 in a single slot group.

FIG. 11 depicts a memory system 1100 in accordance with
another embodiment.

FIGS. 12A and 12B illustrate how different memory mod-
ules can support different operational modes in accordance
with some embodiments.

FIG. 13 depicts a memory module 1300 in accordance with
an embodiment that supports peripheral-command broad-
casting and configurable data widths.

FIG. 14 depicts an address range 1400 to illustrate how
different memory modules can support broadcast commands
in accordance with one embodiment.
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FIG.15A is a flowchart 1500 illustrating how module 1300
of FIG. 13 responds to activate commands on a command/
address bus CA common to two such modules.

FIG. 15B is a flowchart 1530 depicting how a module 1300
associated with aperture B of FIG. 14 responds to a column-
access command 1535.

FIG. 16 is a table 1600 relating eight banks zero through
seven to respective operations to be directed to one of aper-
tures A, B, and C.

FIG. 17 depicts an address range 1700 spanning three
memory modules 1700A, 1700B, and 1700C to illustrate how
different memory modules can support broadcast commands
in accordance with another embodiment.

FIG. 18 depicts an address range 1800 spanning the three
memory modules 1700A, 1700B, and 1700C introduced in
FIG. 17 to illustrate how different memory modules can sup-
port broadcast commands without shared chip-select signals.

FIG. 19 depicts an address range 1900 similar to those of
FIGS. 17 and 18 in accordance with an embodiment that
employs a data key to distinguish broadcast commands absent
a chip-select signal.

FIG. 20A depicts a DPP memory system 2000 in which
each of eight modules 1300 is configured to support eight
direct data connections to a memory controller (e.g., control-
ler 144 of FIG. 1).

FIG. 20B depicts a DPP memory system 2007 in which
each of four modules 1300 is configured to support sixteen
direct data connections to the memory controller.

FIG. 21 illustrates a data structure 2100 that a peripheral
driver (e.g., driver 146 of FIG. 1) assembles and stores in a
cache to convey instructions and data to the OPBA command
ports of eight x8 modules 1300 in accordance with the
example of FIG. 20A.

FIG. 22 illustrates a data structure 2200 that a peripheral
driver (e.g., driver 146 of FIG. 1) assembles and stores in a
cache to convey instructions and data to the OPBA command
ports of thirty-two modules 1300, eight x8 modules on each
of four memory channels.

FIG. 23 illustrates a data structure 2300 that a peripheral
driver assembles and caches to convey instructions and data
to the OPBA command ports of four x16 modules 1300 in
accordance with one embodiment of the example of FIG.
20B.

FIG. 24 provides an example of how a command aperture
2400 for a given memory channel can support non-overlap-
ping write and read address spaces.

FIG. 25A is a block diagram illustrating an enhanced
memory architecture.

FIG. 25B is a block diagram illustrating an enhanced
memory architecture with allocated local memory.

FIG. 25C is a block diagram illustrating an enhanced
memory architecture.

FIG. 25D is a block diagram illustrating an enhanced
memory architecture with secured features.

FIG. 26A is a block diagram illustrating a compute accel-
erated memory module.

FIG. 26B is a block diagram illustrating a compute accel-
erated memory module with dedicated memory.

FIG. 26C is a block diagram illustrating a compute accel-
erated memory module with flexible memory.

FIG. 27A is a block diagram illustrating further detail of a
compute accelerated memory module.

FIG. 27B is a block diagram illustrating further detail of a
compute accelerated memory module with dedicated
memory.

FIG. 27C is a block diagram illustrating further detail of a
compute accelerated memory module with flexible memory.
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FIG. 28 is a block diagram illustrating a subsystem for a
memory module.

FIG. 29 is a block diagram illustrating a subsystem for a
memory module.

FIG. 30 is an illustration of a hybrid flash/DRAM memory
module.

FIG. 31 is a block diagram illustrating a hybrid flash/
DRAM compute subsystem.

FIG. 32 is an illustration of a hybrid disk type nonvolatile
storage and DRAM memory module.

FIG. 33 is a block diagram illustrating a hybrid disk type
nonvolatile storage and DRAM memory module compute
subsystem.

FIG. 34 is an illustration of a hybrid flash/DRAM memory
module.

FIG. 35 is a block diagram illustrating a hybrid flash/
DRAM compute subsystem.

FIG. 36A is a block diagram of a multi-core computer
system.

FIG. 36B is a block diagram of a multi-socket multi-core
computer system.

FIG. 37 is a flowchart of a method of communicating with
a plurality of memory modules that include processors.

FIG. 38 is a flowchart of a method of communicating with
a plurality of memory modules that include processors.

FIG. 39 is a block diagram of a memory module broadcast
system.

FIG. 40 is a block diagram illustrating a memory module
broadcast subsystem.

FIG. 41 is a block diagram of a multi-module synchroni-
zation system.

FIG. 42 is a flowchart of a method of implementing a
semaphore.

FIG. 43 is a block diagram of a graphics rendering system.

FIG. 44A is an illustration of rendering assignments for a
first frame.

FIG. 44B is an illustration of rendering assignment for a
second frame.

FIG. 45 is a block diagram illustrating a memory interface
that descrambles a scrambled memory interface.

FIG. 46 is a flowchart illustrating a training and initializa-
tion sequence for communication between a host processor
and memory module.

FIG. 47 is a block diagram of a system with an aperture
enabled memory controller.

FIG. 48 illustrates a block diagram of a computer system.

DETAILED DESCRIPTION

FIG. 1 depicts a memory system 100 in accordance with
one embodiment. System 100 includes a CPU 105 that com-
municates data DQ and command and addresses CA with a
memory module 110 via a main-memory interface 115.
Memory module 110 includes main-memory 120, consisting
of'a group of IC main-memory devices 125 in this example.
Module 110 additionally includes an application-specific
integrated circuit (ASIC) 130 that acts as a buffer device to
relay commands and data between CPU 105 and main
memory 120. ASIC 130 additionally includes an embedded
processor 135 that shares access to main memory in support
of peripheral functionality, such as graphics or computational
processing, for improved overall system performance. A
peripheral interface 140 facilitates the communication of
peripheral commands and data between CPU 105 and periph-
eral processor 135 in a manner that minimizes or eliminates
the need to modify CPU 105, and consequently reduces prac-
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tical barriers to the adoption of main-memory modules with
integrated processing support.

CPU 105, possibly a system-on-a-chip (SoC), includes a
cache 142 and a memory controller 144, and executes a soft-
ware peripheral driver 146. Driver 146 has access to key
storage 148, and can be, e.g., a software and/or firmware
driver provided in support of communication with module
110 as detailed herein. Driver 146 can be software loaded by
a manufacturer or consumer, and may allow for legacy
memory system compatibility with little or no hardware
modifications.

An 12C controller 150 and related serial buses provide a
reliable standardized channel that allows CPU 105 to access
module-specific configuration information from module 110,
which is typically stored in an EEPROM (not shown). This
information is used to initialize the relatively high-perfor-
mance interface 115 using techniques that are well known to
those of skill in the art. These same resources are used in the
depicted embodiment to share a key between peripheral inter-
face 140 and key storage 148. Controller 150 can be inte-
grated with other components of CPU 105.

ASIC 130 includes two physical interfaces (PHY), both of
which can be conventional. The first is a module interface
152, which receives externally generated transactions like
module commands, main-memory addresses, and module
data, from controller 144. The second physical interface is a
memory interface 154, which supports communication
between ASIC 130 and main memory 120. Although the
memory interface can be of the same type as the module
interface, in some embodiments the memory interface can
differ in the type of signaling employed, data width, com-
mand format, or other aspects that require translation by
ASIC 130. A bridge circuit 156 includes select logic 158 and
160 that allow peripheral interface 140, based on bridging
criteria specified using module commands, to bridge the com-
munication of commands, addresses, and data between main
memory 120 and either CPU 105 or peripheral processor 135.
Bridge circuit 156 also allows peripheral interface 140 to
capture module data that includes operational codes (“op-
codes,” or “peripheral commands™), addresses, data, and
other control signals for peripheral processor 135. Module
interface 152 may support a difterent number of parallel data
channels than main-memory interface 154, in which case
bridge circuit 156 can perform serialization/deserialization
operations for memory data passed between the interfaces.

Peripheral interface 140 functionally resides between
bridge circuit 156 and peripheral processor 135, and includes
an address-capture/command decoder 162, an opcode-port
base address (OPBA) register 164, write and read data queues
166 and 168, a key register 170, a comparator 172, and an
opcode decoder 174. These elements collectively allow
peripheral interface 140 to establish an opcode aperture, cor-
related to a specified capture range of one or more main-
memory addresses, through which CPU 105 can communi-
cate opcodes and data to peripheral processor 135.
Responsive to such opcodes, peripheral processor 135 can
support various aperture functions by executing instructions
stored in main memory 120 or elsewhere. In some embodi-
ments peripheral processor 135 has the capability to generate
peripheral memory commands, addresses, and data respon-
sive to opcodes. The specified capture range of the main-
memory addresses used by the peripheral interface to capture
module data represents a subrange of the memory addresses
receivable at the module interface, and can lie outside of the
full range of main-memory addresses used to address main
memory.
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Main memory 120 can include multiple independently
accessible ranks or groups of ranks, and some of devices 125
can be used to store error-correction codes. In this context, a
“rank” refers to a set of separately addressable memory
devices used for a single memory access. In such embodi-
ments different ranks or rank groups can support separate
physical memory interfaces, such as one for each of CPU 105
and peripheral processor 135. Bridging criterion specified to
decoder 162 may, in such embodiments, pass module com-
mands, main-memory addresses, and module data from mod-
ule interface 152 to at least one of the multiple ranks of
memory devices, and pass peripheral memory commands,
addresses, and data from the peripheral processor to at least
one other of the multiple ranks of memory devices. Such
bridging criterion may be dynamically selectable to support
sequential or simultaneous access to main memory from both
processors without loss of data in a selected one of the mul-
tiple ranks, or to change between passing module commands,
main-memory addresses, and module data from the module
interface to the selected one of the multiple ranks of memory
devices and passing peripheral memory commands,
addresses, and data from the peripheral processor to the
selected one of the multiple ranks.

FIG. 2 depicts an exemplary address space 200 for an eight
gigabyte (8 GB) memory module in accordance with one
embodiment. Address space 200 includes horizontal rows, or
pages, and 256 vertical columns. Each page is sixteen kilo-
bytes (16 KB), and each column sixty-four bytes (64B). One
row is highlighted to indicate an assigned opcode-port row
address, and column address zero in that row is designated the
opcode-port base address OPBA. As detailed below, CPU 105
assigns module 110 the OPBA and thereafter employs that
address to direct commands to peripheral processor 135. The
OPBA information is sufficient to uniquely identify an
opcode aperture, and may include bits that specify chip-
select, bank, row, and column signals. Other embodiments
can use different and/or additional columns and/or rows for
OPBAs.

FIG. 3A is a flowchart 300 illustrating a method of assign-
ing a base address OPBA for peripheral interface 140 of FIG.
1 in accordance with one embodiment. During system initial-
ization (e.g., a power up), peripheral driver 146 requests a key
via controller 150 (305). Peripheral interface 140 responds by
passing back the contents of key register 170 (310), which
driver 146 stores in key storage 148. The key is, in this
example, a sixty-four byte string set by the module manufac-
turer.

Driver 146 requests a reserved memory region with the
desired attributes from the operating system and receives a
pointer to the start of the reserved memory region (315). In
this case, as illustrated in FIG. 2, driver 146 requests a 16 KB
region (a DRAM page, which maps to multiple physically
contiguous operating-system pages) within the 8 GB space
addressable on memory module 110. Driver 146 specifies to
the operating system that the requested page is non-cache-
able, reserved (i.e., not used or managed by the operating
system) and preferably aligned to a memory module page
boundary. The non-cacheable or uncacheable (UC) attribute
is intended to enable memory accesses to bypass the CPU’s
on-chip caching hierarchy and forward requests to memory
controller 144. In some CPU implementations, non-cache-
able memory accesses are unoptimized and can therefore
suffer from severe performance degradation. As an alterna-
tive to the uncacheable memory attribute, the write-combin-
ing (WC) memory attribute can also be used, which specifies
a different type of uncacheable memory. Write combining
allows multiple fine-grained memory accesses to be gathered
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in write-combining buffers up to a cache line granularity
before the request is forwarded to the memory controller. This
can boost write performance, but can also cause weak write
ordering semantics, which can be problematic if the periph-
eral device needs to receive its commands and data in a
sequential order. In the description that follows, the use of
uncacheable memory is assumed, regardless of whether that
memory has the write combining property.

Next, and again at the direction of driver 146, a write of the
64-byte data key is performed to the base address referenced
by the pointer provided by the operating system (317). The
write is forwarded to memory controller 144, which issues a
command to activate the assigned OPBA row (320) of the
target rank and bank, followed by a write operation (gener-
ally, to column address zero). The column write operation
includes a write command, addresses, and a 64B data key as
write data. Address-capture/command decoder 162 decodes
the write command and writes the key to write-data (WD)
queue 166 (325). Comparator 172 alerts decoder 162 that the
key in queue 166 is identical to the one stored locally in
register 170, and decoder 162 stores the thus identified OPBA
into register 164 (335). From that point forward, decoder 162
snoops command/address bus CA for activation commands
directed to the OPBA row and access commands directed to
the OPBA.

The OPBA is established in different ways in other
embodiments, as by direct sharing via the 12C bus or a dedi-
cated register within ASIC 130 that can be directly written by
peripheral driver 146. The key comparison takes place after
receipt of the corresponding address, and decoder 162 is
configured to accommodate this latency to ensure the correct
address is correlated to the key and stored in register 164. In
some embodiments the latency used to correlate the key and
OPBA is programmable.

Some memory controllers scramble data before writing it
to an associated memory address. The scrambled data subse-
quently read from that address is descrambled to recover the
original data. Such scrambling tends to reduce power supply
noise, as detailed in U.S. Pat. No. 7,945,050 to Christopher
Mozak, which is incorporated herein by reference. Data
scrambling makes it difficult to pass a key to identify the
OPBA assigned by the operating system. Other embodiments
therefore use aperture signatures other than a key to assign an
OPBA.

FIG. 3B is a flowchart 340 illustrating a method of assign-
ing a base address OPBA for peripheral interface 140 of FIG.
1 in accordance with an embodiment in which controller 144
scrambles write data. As in the prior example, driver 146
requests and receives a pointer to a reserved memory region
from the operating system (350) having specified the desired
memory attributes as described above.

Next, and again at the direction of driver 146, the CPU
issues a series of uncacheable writes to the reserved memory
region, which the memory controller 144 forwards as a burst
of back-to-back writes to the OPBA row (355). The number
and rapidity of these writes to a common bank and row
provide an aperture signature that decoder 162 can detect
(360) in lieu of e.g. a data key. For example, a minimum
number of accesses to a single memory row over a defined
time period may define the aperture signature. With the sig-
nature detected, decoder 162 captures the associated address
(365) and stores it in address-capture/command decoder 162
(370). From that point forward, decoder 162 snoops com-
mand/address bus CA for activation commands directed to
the OPBA row and access commands directed to the OPBA.

In some embodiments there may be some probability that
another start-up process will exhibit the aperture signature, in
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which case interface 140 could capture the wrong OPBA. The
possibility of such errors can be reduced or eliminated if the
address capture is executed as part of or immediately subse-
quent to the boot sequence, during which time little memory
traffic is expected for other applications. In any event, appli-
cations are unlikely to write the same set of addresses repeat-
edly over a short period of time, and if they did so such writes
would likely be to cache rather than to main memory. The
number of such writes can be sufficiently high to reduce the
effective likelihood to zero. Request apertures assigned by an
operating system can be conveyed to the peripheral interface
using other recognizable patterns in other embodiments.
However the aperture base address is captured, the memory
system can issue a command to that aperture to verify the
address is correct, and can restart the process of FIG. 3B ifthe
verification fails.

Data communicated to ASIC 130 may be scrambled using
a key that is not known to peripheral interface 140. For
example, some memory controllers may XOR data to be
written to a specified column with a key created from the
column write address and an unpublished binary string. In
some embodiments, peripheral interface 140 can work with
driver 146 to discover and store the key for each column ofthe
OPBR row, which enables interface 140 to unscramble and
scramble commands and data conveyed to and from the aper-
ture.

The following list details a process of discovering and
storing keys for each column of the OPBA row in accordance
with one embodiment. As before, this process starts with
driver 146 requesting a receiving a row address from the
operating system having specified that the requested page is
non-cacheable, non-paged, write-combined, and preferably
aligned to a memory module page boundary.

1) Driver 146 writes all zeroes, scrambled by memory
controller 144, to a column in the OS-assigned OPBA
row N times, thereby assigning the OPBA.

2) The address capture/decoder on ASIC looks for N writes
to same address, and captures the OPBA and the
scrambled data. The scrambled datain WD Queue 166 at
column zero are the XOR of the OPBA key and all
zeroes, and thus represents the key for the OPBA.

3) Driver 146 issues a read instruction to the OPBA.
Decoder 162 XORs the scrambled-zero data (the key)
with all ones to return the complement of the key to
driver 146.

4) Memory controller 144 unscrambles the received data.
Peripheral driver 146 determines whether the
unscrambled data is all ones. If so, then the OPBA is
initialized. If not, then driver 146 retries steps 1-3 until
initialization succeeds, or until initialization fails M
times.

5) Driver 146 next sends a command packet to the OPBA
instructing interface 140 to go in a sequential column
capture mode to initialize the remaining column
addresses of the OPBA row. As discussed below, this
mode enables ASIC 130 to create a mapping table cor-
relating column addresses specified by driver 146 with
physical columns in the OPBA row.

6) Driver 146 initializes column one of the OPBA row by
first writing all zeros to the next column address N times,
as was done in step one for the OPBA. Address capture/
decoder 162 senses this pattern and captures the key. For
processors that combine writes, which can reorder col-
umn accesses, the column specified by this initialization
step may not be column one. Interface 140 saves a map-
ping of the driver-specified column address to column
address one. The scrambled data (XOR key for column)
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is written into column one as in the initialization
sequence for the OPBA. (Subsequent accesses to the
same driver-specified column of the OPBA row will
likewise be redirected to column one.)

7) Driver 146 issues a read to column one of the OPBA row.
Address capture/decoder 162 XORs the scrambled-zero
data (the key for column one of the OPBA row) with all
ones to return the complement of the key.

8) Memory controller 144 unscrambles the complement of
the key. If all ones, column one of the OPBA row is
initialized; if not, then driver 146 retries steps 6-8 until
initialization succeeds, or until initialization fails M
times.

9) Steps 6, 7, and 8 are repeated for each successive column
of the OPBA row.

10) Driver 146 sends a command packet to the OPBA
instructing interface 140 out of the sequential column
capture mode.

Ifthe initialization completed successfully, interface 140 has
apopulated table listing the key for each column of the OPBA
row and any required mapping between driver-specified and
physical column addresses for the OPBA row.

FIG. 4 is a flowchart 400 illustrating how memory module
110 of FIG. 1 manages OS requests from CPU 105 for access
to main memory 120 and support from peripheral processor
135 in accordance with one embodiment. Both main-memory
and peripheral-processor requests can be initiated and
directed using access commands directed to main-memory
addresses.

At405, decoder 162 in peripheral interface 140 captures an
activate command ACT from memory controller 144 via
command/address bus CA. Decoder 162 references register
164 to determine whether the main-memory address to which
the command is directed matches the stored OPBA row (deci-
sion 410). If not, then the command is a conventional main-
memory command. Decoder 162 directs the command to
main memory 120 via select logic 160 to activate (open) the
addressed row in devices 125 (415). Module 110 subse-
quently receives one or more access commands directed to
columns within the open row. In this embodiment such access
commands specify the bank and rank of the OPBA but lack
the row address. As indicated in the For-loop 420A/B, main-
memory devices 125 decode and execute these commands
(425 and 430). Eventually module 110 will receive a pre-
charge command (435) and devices 125 will close the open
row (440) in preparation for the next main-memory access.

Returning to decision 410, and assuming the received com-
mand is directed to the OPBA row, decoder 162 activates a
trap for subsequent column accesses to the rank and bank
address corresponding to the OPBA row (445). Column com-
mands generally do not explicitly identify the open row to
which the command is directed, but most DRAM devices and
controllers allow only one row to be open in each rank and
bank. Accordingly, once the OPBA row has been “activated,”
any column access commands directed to the OPBA rank and
bank address can be trapped as data transfers with either WD
queue 166 or RD queue 168. Activations to the OPBA row
and column commands directed to an activated OPBA row
may also be passed to memory interface 154 in parallel with
comparisons performed by decoder 162 to avoid potential
added latency for the comparison operations. Parallel for-
warding of OPBA row activity to memory interface 154 can
cause activity on main-memory devices 125—this activity is
of no consequence, however, as bridge circuit 156 will not
pass the addressed data to or from main memory 120 if the
OPBA row is selected. Decoder 162 also controls select logic
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158 to connect data bus DQ to a pair of queues 166 and 168,
which respectively serve as write and read buffers.

Each of queues 166 and 168 stores one page (16 KB)
divided into 256 64B subsections that are uniquely identified
by a column address, e.g., an addressing structure that mirrors
that of a page of main memory 120. Write queue 166 effec-
tively takes the place of the OPBA row address in main
memory for write operations, while read queue 168 does the
same for read operations. Queues 166 and 168 are static
random-access memory (SRAM) in this example, and thus do
not require “activation” in the sense that a DRAM row
requires activation.

Once decoder 162 identifies a row activation as directed to
the OPBA row, and thus to the “open” queues, decoder 162
awaits an access command specifying an operation and a
column to which the operation is directed. Decoder 162 then
decodes each subsequent access command to the OPBA row
address (For loop 450A/B). If a write access is to column
zero, the assigned OPBA in this example, then decoder 162
issues a control signal Decode to OpCode decoder 174, caus-
ing decoder 174 to decode an opcode from the column zero
address in write-data queue 166 (465), and pass the decoded
opcode OpCode and any associated peripheral write data
WDp to peripheral processor 135. Peripheral processor 135
executes the opcode OpCode to perform some peripheral
function (470), and in so doing may alter the contents of main
memory via bridge circuit 156.

Access commands to the OPBA row can be to any of the
256 columns. Decoder 162 decodes the command informa-
tion in each case and performs the commanded function on
queues 166 and 168 (475). A read command to any column of
the row address for the OPBA, for example, reads from the
specified subset of locations in read queue 168, and a write
command to any column of the same row address writes to the
corresponding subset of locations in write queue 166. Even-
tually, module 110 will receive a precharge command (480)
for the rank and bank assigned to the OPBA, and decoder 162
will release the column-address trap (485). Module 110 there-
after awaits the next command. It is also of note that although
flowchart 400 shows separate paths for main memory
accesses and OPBA row accesses, a typical memory control-
ler will interleave memory commands to multiple banks and/
or ranks—thus in many instances CPU 105 can be accessing
main memory 120 and communicating with peripheral inter-
face 140 in consecutive column access commands directed to
different ranks and/or banks.

FIG. 5 illustrates a data structure 500 that peripheral driver
146 assembles and stores in cache 142 to convey instructions
and data to the OPBA command port in accordance with one
embodiment. Data structure 500 specifies the information to
be stored in write-data queue 166 over one or more write
operations to the OPBA row. The information is divided into
256 logical columns in the same manner as write-data queue
166, and each logical column is further divided into eight
64-bit fields, an instruction field, an address field, a write-data
field, a write-mask field, and four fields that are reserved.
These fields are uniquely designated by a “Qword Index” in
FIG. 5. The term “Qword” stands for “quad-word,” with a
word being sixteen bits.

Eight bits OP[7:0] of the instruction field are used to rep-
resent an opcode to be decoded by OpCode decoder 174 (or
passed to peripheral processor 135 for decoding). Eight more
bits BL[7:0] store a burst-length variable, which can be used
to specify the number of subsequent write accesses to be burst
into queue 166. Embodiments thus allow for high-efficiency
open-page write and read data bursts of up to 256 columns.
Processor 135 may be required to complete a specified burst
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before executing whatever instruction is encoded in the bits
OP[7:0] to avoid a race condition. The next instruction bit
M| 0] indicates whether to apply a data mask specified in the
write-mask field. Bits PSB[2:0] are optional peripheral-select
bits, so called because they specify one or more peripheral
processors that are the target of broadcast commands. An
embodiment that uses PSB bits to allow commands receives
at a plurality of modules to be executed by any one or com-
bination of their respective peripheral processors is detailed
in connection with FIGS. 13-15. The remaining bits 63:20 of
the instruction field are reserved.

The address field allows CPU 105 to specify a memory
address to peripheral processor 135, such as to identify a
location in main memory, a register on module 110, or some
other memory or function. These addresses can map to any-
where in the memory hierarchy of ASIC 130 and in any way
desired between driver 146 and ASIC 130 with little or no
impact on CPU 105 or the operating system.

The write-data field in the OPBA column allows opcodes
to the OPBA to communicate up to sixty-four bits of write
data. Each of the remaining 255 columns of the OPBA row
can contain up to 512 additional bits of write data. All of this
write data can be passed to peripheral processor 135, as
peripheral write data WDp, for storage and manipulation.
Such data might include, for example, processor instructions
to be stored in main memory 120 or elsewhere for execution
by processor 135.

As noted previously, data structure 500 is created in cache
142 and written into write-data queue 166. Processor 135 can
manipulate or store this information and return the results of
such manipulation or data read from memory to CPU 105 via
read-data queue 168. A non-exhaustive list of possible opera-
tions and their associated opcodes are noted below.

FIG. 6 shows how the contents of read-data queue 168 may
be arranged in accordance with one embodiment. As with the
write-data queue 166, read-data queue 168 is divided into 256
logical columns, and each logical column supports storage for
up to 512 bits of read data. CPU 105 can access any of this
data by issuing a read command to the corresponding column
within the OPBA row. To read from another address location
via peripheral processor 135, CPU 105 issues a write com-
mand to the OPBA that includes the requisite opcode and
address for processor 135 to retrieve (and/or calculate) the
requested information and store it in read-data queue 168.
CPU 105 then follows up with a read command to the read-
data queue when the requested information is available. To
ensure the requested information is available when read from
queue 168, CPU 105 may periodically read a status bit con-
trolled by peripheral processor 135 in, e.g., read-queue 168 or
elsewhere, or peripheral processor 135 or interface 140 may
issue an interrupt signal to indicate completion of the read.
CPU 105 may likewise be alerted to the completion of other
processes carried out by the peripheral processor. Interface
115 may be modified to support such interrupts in other
embodiments.

FIG. 7 depicts a memory system 700 in accordance with a
multi-module embodiment. System 700 includes features in
common with system 100 of FIG. 1, with like-identified ele-
ments being the same or similar. Such elements include a
CPU 105 and twelve modules 110 supported by a common
motherboard 705. Modules 110 are arranged in three slot
groups A, B, and C and four channels Ch[3:0] (each corre-
sponding, e.g., to a embodiment of channel 115 of FIG. 1).
Each moduleis 8 GB, for a total of 96 GB. Rather than a single
16 KB page in one module serving as the opcode aperture,
each aperture is extended across a slot group for a total of 64
KB.
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FIG. 8 graphically depicts three apertures A, B, and C, one
for each of the like-identified slot groups in FIG. 7. Each slot
group provides 32 GB (4x8 GB) of memory, one row address
(extended across the slot group) within each slot group is
assigned the role of OPBA row, and four columns zero are
assigned the roles of OPBA for the respective modules in each
slot group.

FIG. 9 depicts the three apertures A, B, and C of FIG. 8 in
more detail. With reference to aperture A, that OPBA row
includes 256 columns for each of four channels Ch[3:0], for a
total address space of 64Bx4x256=64 KB. Apertures B and C
likewise provide the same address-space configuration at
their respective starting locations.

FIG. 10 illustrates a data structure 1000 that peripheral
driver 146 assembles and stores in cache 142 to convey com-
mands and data to the OPBA ports in each ofthe four modules
110 in a single slot group. Data structure 1000 is similar to
data structure 500 of FIG. 5, but includes the likes of data
structure 500 for each of the four channels Ch[3:0], inter-
leaved in the same manner that the memory controller inter-
leaves the memory channels to, e.g., facilitate efficient paral-
lel communication to and from the peripheral processors.

FIG. 11 depicts a memory system 1100 in accordance with
another embodiment. System 1100 includes features in com-
mon with system 100 of FIG. 1, with like-identified elements
being the same or similar. Discussions of common features
are largely omitted here for brevity.

System 1100 includes CPU 105 and a memory module
1110 interconnected by a main-memory interface that
includes a command/address bus 1115 and a data bus 1120,
each of which includes a number of parallel channels. Com-
mand/address bus 1115 conveys chip-select, bank, row, and
column (CS/B/R/C) address signals, and data bus 1120 con-
veys data signals DQ. Buses 1115 and 1120 are both shown to
include signal conductors that switch positions en route to
module 1110. The crossings illustrate signal-routing choices
made in some systems to simplify part placement and trace
routing on the printed-circuit board (e.g., motherboard) sup-
porting CPU 105 or to improve signal integrity by reducing
trace length or stub length. For memory operations, some bit
positions of data, or of addresses, can often be switched
without affecting circuit performance providing the switch-
ing applies to both reads and writes. Some signal traces may
therefore be routed in a manner that is more convenient or
efficient without introducing logic errors—as long as the
memory module does nothing but stores and reads. This com-
mon practice is sometime referred to as “swizzling.”

Swizzled data or address lines that do not affect main-
memory accesses may nevertheless interfere with commands
to peripheral interface 1125. Swapping data bits may, for
example, change an opcode embedded in write data for
peripheral processor 135. Peripheral interface 1125 therefore
includes a programmable de-swizzling circuit 1130 and asso-
ciated swizzle register 1135, the latter of which may be con-
nected to or part of some serial-presence-detect (SPD) logic
1140. Before module 1110 is placed in system 1100, an
EEPROM 1145 or other memory is programmed with swizzle
information for the motherboard, the key for register 170, and
other initialization information (the EEPROM can also be
programmed by the system the first time the module is con-
nected, or swizzle register 1135 can be explicitly loaded by
the system after each reset). A microcontroller 1150 then
loads registers 1105 and 170 as part of an initialization routine
that calibrates, e.g., the module and memory interfaces. De-
swizzling circuit 1130 thus counteracts on-board swizzling
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responsive to a de-swizzle signal DeS from register 1135 by
reordering the module data received concurrently at the mod-
ule interface.

A conventional serial interface 1155 provides test and con-
trol access to controller 1150. Peripheral interface 1125 oth-
erwise operates as described above in connection with FIG. 1,
so a detailed treatment is omitted here. The information in
EEPROM 1145 includes boot code that can be executed by
controller 1150 so that when system 1100 completes a power-
on reset the module and memory interfaces 152, 154, and
1180 are calibrated. These calibration procedures can be
transparent to CPU 105.

De-swizzling circuit 1130 is not shown as affecting
memory traffic between the module interface 152 and bridge
circuit 156. In an alternate embodiment, all memory traffic is
“de-swizzled,” such that data stored in main memory can be
directly accessed by the peripheral processor in a consistent
storage format.

To the right of interface 1125, peripheral processor 135
interfaces with a peripheral memory controller 1170, which
manages access to main memory 120 for processor 135 in the
same manner that memory controller 144 manages access for
CPU 105.

Peripheral processor 135 has access to additional periph-
eral local memory device(s) 1175 in this embodiment, and
gains and manages access via a local physical interface 1180
and controller 1185. Local controller 1185 may include sup-
port for address translation between an addressing scheme
employed by main memory and one specific to the local
memory. Peripheral memory controller 1170 may likewise
include support for address translation depending upon the
needs of processor 135.

Peripheral memory device(s) 1175 might be, e.g., high
performance but have a smaller addressable space relative to
main memory to support improved peripheral performance.
Peripheral processor 135 may, for example, execute periph-
eral graphics instructions stored in peripheral memory
device(s) 1175. Rather than or in addition to graphics pro-
cessing, peripheral functions can include network support,
data compression/decompression, encryption/decryption,
scientific computation, etc. Different memory modules can
support the same or different types of peripheral processing,
oronly a subset of the modules may include such support. The
operands for the peripheral functions can be provided as or
derived from peripheral write data WDp.

FIGS. 12A and 12B illustrate how different memory mod-
ules can support different operational modes in accordance
with some embodiments. In FIG. 12 A, two apertures B and C
are within the address range of a slot group A (SG_A), and all
of the main memory within slot groups B and C (SG_B and
SG_C) is dedicated to the peripheral processor. That is, slot
groups B and C do not provide direct main-memory access
via, e.g., module interface 152 communicating through
memory interface 154, but rather require such access be made
via peripheral driver 146 commands directed to processor 135
via apertures C and B. The peripheral interfaces in slot groups
B and C are programmed to respond to their respective aper-
ture addresses, which actually indicate bank and rank
addresses assigned to slot group A. The peripheral interfaces
in slot group A are programmed to not respond to accesses to
the slot group B and C apertures. From the perspective of the
CPU, as illustrated in FIG. 12A, slot group A offers 32 GB of
memory and slot groups B and C are unreachable. From the
perspective of peripheral driver 146, as shown in FIG. 12B,
each of slot groups B and C offers an additional 32 GB of
memory via a respective aperture. Address space associated
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with one or more additional memories 1205 and 1210 may
also be available via the same apertures.

Each memory module can be configured to support aper-
tures, to provide peripheral memory, or both, and the balance
between the relative quantities of main memory available to
the CPU and peripheral processor can be changed, e.g., at
initialization or dynamically. With reference to FIG. 11, for
example, a write instruction to the OPBA or a register setting
can cause decoder 162 to control bridge circuit 156 such that
access to main memory 120 is always via one of controllers
144 and 1170. Alternatively, such instructions can be used to
switch access between controllers at will depending upon the
needs of system 1100.

For a legacy system, memory controller 144 may not be
able to share overlapped access with the peripheral processor
to the same main memory ranks, as memory controller 144
will expect certain timing for activate, precharge, column
access, and refresh commands. This timing could be violated
if the peripheral processor has, e.g., opened a row in main
memory when memory controller 144 considered the bank
precharged. Accordingly, several different shared access
modes are contemplated.

In one access mode, main memory on a given module 1110
is dedicated (e.g., during operating system configuration) for
use either by the peripheral processor 135 or by CPU 105. If
main memory is dedicated to the CPU, bridge circuit 156 is
configured to connect the memory interface with the module
interface 152 and to ignore memory requests from peripheral
memory controller 1170. If main memory is dedicated to the
peripheral processor 135, bridge circuit 156 is configured to
allow memory requests from peripheral memory controller
1170 and ignore memory requests from the module interface
152 (in this mode, the module interface is used only to com-
municate with the peripheral interface 1125).

In another access mode, useful for example in the FIG. 11
embodiment having separate memory interfaces 154a and
1545 to two different main memory ranks 120a and 1205,
bridge circuit 156 can be configured to connect the module
interface with one rank and the peripheral main memory
controller 1170 with the other rank, allowing the two proces-
sors to share main memory. Each memory controller inde-
pendently manages the rank(s) assigned to it by the peripheral
driver 146. The active aperture is to an address within the
rank(s) assigned to memory controller 144. Bridge circuit 156
can therefore bridge main-memory commands and addresses
from module interface 152 to main-memory interface 154a,
and peripheral memory commands and addresses from pro-
cessor 135 and main-memory interface 1545.

It may also be useful to “switch” a rank or ranks from
control by memory controller 144 to control by peripheral
memory controller 1170. For instance, main memory rank
120a could be assigned to CPU 105 while main memory rank
1205 is used to make some calculations and store results in
main memory, and then the two roles could be switched.
Although peripheral memory controller 1170 can readily be
designed to allow such switching using opcodes passed
through the opcode aperture, as the ASIC can be designed to
understand the existence of another memory controller, a
legacy memory controller 144 may not. One way to allow
such a mode is to construct two apertures, one in the memory
space of each of two ranks, with the peripheral driver 146
communicating with the peripheral processor 135 using the
aperture within a rank that is active from the perspective of
controller 144. The peripheral driver 146 can then command
memory controller 144 to place another rank in self-refresh
mode (e.g., amode in which a main-memory device retains its
contents, with no input from the memory controller until a
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wake-up signal is sent). Peripheral interface 1125 and bridge
circuit 156 are configured, in this switching mode, to allow
peripheral memory controller 1170 to access and control a
rank that has been placed in self-refresh mode by memory
controller 144 (ASIC 1105 is programmed to not pass the
self-refresh mode command through to the memory, but to
instead alert peripheral processor 135 that it may either use
the memory rank, or place the memory in self-refresh mode).
The following list provides examples of the types of
opcodes and other information that may be directed to opcode
apertures (e.g., addressed to an OPBA) in accordance with
some embodiments.

Opcode 0: NOP. Specifies no operation is to be done, and
might be used when writing to an OPBA column without
seeking a peripheral operation.

Opcode 1: Reserved.

Opcode 2: ASIC Register Write. Accompanied by address
bits specifying a register on the ASIC and commanding
a peripheral processor to write specified data to the reg-
ister.

Opcode 3: ASIC Register Read Trigger. Accompanied by
address bits specifying a register on the ASIC and com-
manding the peripheral processor to load data from the
register into the read-data queue.

Opcode 4: Peripheral Host Write. Accompanied by address
bits specifying a register on the module and command-
ing the peripheral processor to write specified data to the
register.

Opcode 5: Peripheral Host Read Trigger. Accompanied by
address bits specifying a register on the module and
commanding the peripheral processor to load data from
the register into the read-data queue.

Opcode 6: ROM 64-bit Write. Accompanied by address
bits specifying a programmable read-only memory
(PROM) address on the module and commanding the
peripheral processor to write specified data to the
PROM.

Opcode 7: ROM 64-bit Read Trigger. Accompanied by
address bits specifying a ROM address on the module
and commanding the peripheral processor to load data
from the ROM into the read-data queue (the targeted
ROM can be a PROM).

Opcode 8: Local Memory Burst Write. Accompanied by
address bits specifying an address in a local memory and
burst-length bits specifying a burst length, commands
the peripheral processor to write specified data to local
memory as a burst of column-sized (64B) chunks. Burst
length can be specified from one to 256.

Opcode 9: Local Memory Burst Read Trigger. Accompa-
nied by address bits specifying an address in local
memory and burst-length bits specifying a burst length,
command the peripheral processor to load data from a
local memory into the read-data queue as a burst of
column-sized chunks. Burst length can be specified
from one to 256.

Opcode 10: Main Memory Burst Write. The same as
Opcode 8 but applied to main memory.

Opcode 11: Main Memory Burst Read Trigger. The same
as Opcode 9 but applied to main memory.

Opcode 12: ROM Burst Write. The same as Opcode 8 but
applied to a PROM.

Opcode 13: ROM Burst Read Trigger. The same as Opcode
9 but applied to ROM.

Opcodes 14-255: Reserved.

FIG. 13 depicts a memory module 1300 in accordance with

an embodiment that supports peripheral-command broad-
casting and configurable data widths. Memory module 1300
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is similar to module 110 of FIG. 1, with like-identified ele-
ments being the same or similar. Module 1300 differs from
module 110 in that its embodiment of a peripheral interface
1305 includes a peripheral-select-bit (PSB) decoder 1310 that
allows peripheral interface 1305 to determine whether broad-
cast peripheral commands are directed to the resident proces-
sor 135. This aspect of module 1300 is detailed below in
connection with FIGS. 14 and 15. Module 1300 also differs
from module 110 in that its bridge 1315 is configurable, based
on a control input from a serial-presence detect (SPD)
memory 1320, to communicate data of width eight, sixteen,
thirty-two, or sixty-four via all or a subset of data lines
DQJ[63:0]. Modules that support multiple data widths can be
used, e.g., to implement Dynamic Point-to-Point (DPP)
memory architectures. Briefly, DPP architectures combine
the performance benefits of point-to-point signaling with the
flexibility of multi-drop topologies. Module 1300 combines
support for DPP with the ability to accomplish peripheral
processes in the manner detailed previously. SPD memory
1320 is initialized at start-up, using well known techniques, to
select the desired width.

Command broadcasting, in this context, refers to the simul-
taneous delivery of the same command to multiple peripheral
processors instantiated on the same or different modules. It is
sometimes desirable to break up a job into multiple similar
tasks and execute each on a separate peripheral processor. In
video processing, for example, a technique known as split
frame rendering allocates a rending process to be performed
on a single video frame among multiple graphics processors.
The processors work in parallel on different subsets of the
frame to expedite the rendering process. Such parallel pro-
cessing can be used to advantage in many areas beyond graph-
ics. A memory system with multiple instances of module
1300 can broadcast the same command to multiple modules
in support of parallel processing. In some embodiments com-
mands can specify one or more target processor, and can thus
be conveyed to one or any combination of multiple peripheral
processors.

FIG. 14 depicts an address range 1400 to illustrate how
different memory modules can support broadcast commands
in accordance with one embodiment. Two apertures A and B
are within the address ranges of respective slot groups SG_A
and SG_B. Aperture A is a non-pageable, non-cacheable row
reserved for use by a peripheral processor. The rest of the
address space in both slot groups, including the row in slot
group SG_B that shares the address of Aperture B, is available
to the CPU (e.g., CPU or SoC 105 of FIG. 1) as main memory.
In this example the addresses for both apertures are offset
from address zero in their respective slot groups by the same
number of address locations, though different schemes can
also be used.

Apertures A and B provide access to respective peripheral
processors as detailed in connection with earlier figures. A
module 1300 associated with aperture B can additionally
respond to commands directed to a module associated with
aperture A so that the same command can be issued to both
modules simultaneously. The module 1300 associated with
slot group B uses chip-select signals to distinguish between
accesses to apertures A and B. As detailed below, the module
1300 of slot group B senses memory commands directed to
the row address of aperture B and treats them differently
depending upon whether such commands are accompanied
by a chip-select signal CS specifying that module. If a chip
select is asserted, the module responds conventionally to the
command to provide access to main memory. If a chip select
is not asserted when a command is addressed to the row
address of aperture B, however, then the command is
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addressed to Aperture A in another module. Interface 1305
employs PSB decoder 1310 to determine whether module
1300 of slot group B is to respond to the command to aperture
A. PSB decoder 1310 considers information accompanying
the command that specifies the target peripheral processor or
processors. In a two-module system, for example, a command
provided via a common data channel can be executed in slot
group A, slot group B, or both slot groups simultaneously.

FIG.15A is a flowchart 1500 illustrating how module 1300
of FIG. 13 responds to activate commands on a command/
address bus CA common to two such modules. This example
pertains to a module 1300 for which the aperture address is
available to the memory controller as a page of main memory,
as was the case for a module 1300 that supports aperture B of
slot group B of FIG. 14. That is, a memory controller (not
shown) can access either (1) a page of main memory at
aperture B by asserting a chip select signal, or (2) a peripheral
processor via aperture B by setting an appropriate PSB bitand
failing to assert the chip select signal. In other embodiments
aperture B is unavailable as main memory, and commands to
aperture B accompanied by a chip select to a module 1300
within slot group B are treated as peripheral commands in the
manner detailed above.

Beginning at 1505, module 1300 receives an activate com-
mand on bus CA. As is conventional in some memory sys-
tems, the activate command specifies a chip-select CS, rank,
bank, and row. In decision 1510, if the chip-select indicates
the command is directed to a module 1300 in slot group B,
then peripheral interface 1305 causes the module to respond
normally to the memory request (e.g., to read from or write to
main memory 120). If chip-select is not asserted, however,
interface 1305 determines whether the command is neverthe-
less directed to its peripheral processor 135 by way of aper-
ture B. Per decision 1515, if the row address (rank/bank/row)
corresponds to the aperture row OPBA, then the command is
to the aperture address, and may therefore be for either or both
of'the peripheral processors associated with slot groups A and
B. In that case interface 1305 of the module in slot group B
sets a rank/bank trap for subsequently received column-ac-
cess commands (1520). As described below, this trap is to
distinguish between column commands subsequently
directed to the aperture from those directed to different ranks
orbanks. Ifthe received command is neither to the OPBA row
nor to the OPBA rank and bank (1522), then the command is
simply ignored by the module 1300 of slot group B. If the
received command is to the same rank and bank per decision
1522, then the command is to another row in the same rank
and bank. In that case any trap set in 1520 for an earlier
command is cleared (1525). A data trap, the purpose for
which is explained below in connection with FIG. 15B, is also
cleared in 1525. Module 1300 thus prepares itself to either
consider or ignore subsequent column-access commands
based on a specified OPBA row address despite the absence of
a respective chip-select signal.

FIG. 15B is a flowchart 1530 depicting how a module 1300
associated with aperture B of FIG. 14 responds to a column-
access command 1535. As is conventional, the column-access
command specifies the rank and bank, but does not specify the
row. If the command includes or is accompanied by a chip-
select to module 1300, then interface 1305 perceives the
command as a normal column access to main memory and
responds accordingly by e.g. reading from or writing to main
memory 120. If chip-select CS is not asserted, however, inter-
face 1305 either ignores or decodes the command based upon
whether the specified rank and bank corresponds to the OPBA
row and the rank/bank trap was set in 1520 of FIG. 15A. As
detailed previously, the rank/bank trap is set when an activate
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command is directed to the OPBA row absent a chip select
signal. Subsequent column accesses to a different rank and
bank that are not accompanied by a chip select are not to the
OPBA, and are thus ignored. Subsequent column accesses to
the same rank and bank are necessarily to the OPBA row ifthe
trap remains set, however, and further consideration is nec-
essary to determine whether such commands are directed to
the module 1300 of slot group B.

In 1550, the command received in 1535 is decoded. If the
command is a write to column zero, the designated OPBA in
the examples used herein, then interface 1305 decodes a
portion of the data that accompanies the column access com-
mand on data lines DQ using PSB decoder 1310. A field
within the data, introduced above in connection with FIG. 10,
is encoded to designate one or more modules. Any one or
combination of modules on a given channel can therefore be
selected to respond to a given command. If the PSB bits
assigned to module 1300 match that of decoder 1310 (deci-
sion 1560), then interface 1305 sets a data trap 1565 and
writes the incoming data to the write-data queue (1580). Ifthe
PSB bits do not refer to module 1300, then the incoming
command is not for module 1300 and is consequently
ignored. Interface 1305 clears the data trap, if set, and awaits
the next command. PSB decoder can be configured at start-up
or otherwise to uniquely identify the corresponding module
1300 on a given channel.

Returning to decision 1555, if the command is not a write
to column zero, and the data trap was not set responsive to an
earlier command, then the instant command is ignored. If the
data trap was set, however, then the command writes data to
the write-data queue (1580). Other operational steps of mod-
ule 1300 are as detailed previously.

FIG. 16 is a table 1600 relating eight bank addresses zero
through seven to respective operations. In this embodiment
the OPBA row address specifies the bank of the OPBA in
addition to the row. The specified bank is used to direct an
operation to any one or various combinations of apertures A,
B, and C by specitying a corresponding bank address. Aper-
tures A, B, and C may correspond to respective slot groups as
detailed in connection with e.g. FIGS. 7-9. Bank bits are
commonly low-order bits in the physical address mapping,
and can be convenient for distinguishing between apertures or
groups of apertures. Other bits may be used in other embodi-
ments.

Inthe example of table 1600, write and read commands can
be addressed to any one of apertures A, B, and C by specifying
the respective one of banks zero, one, or two in the OPBA row
address. Broadcast commands directed to the OPBA can
specify one of banks four through seven to select any two or
all three of apertures A, B, and C. Bank address bits can thus
serve as peripheral select bits in a manner similar to what that
detailed above in connection with FIGS. 13-15B. In this
embodiment each module can be configured such that its
peripheral interface recognizes a unique set of bank addresses
associated with the OPBA row address. For example, the
module supporting aperture A of table 1600 would be con-
figured to respond to commands directed to recognize banks
zero, four, five, and seven of the OPBA address row address.

FIG. 17 depicts an address range 1700 spanning three
memory modules 1700A, 1700B, and 1700C to illustrate how
different memory modules can support broadcast commands
in accordance with another embodiment. In this example each
module can include up to four ranks, and each rank is con-
trolled by a respective chip-select signal (e.g., module 1700A
includes ranks A[3:0], which are controlled by respective
one-hot chip-select signals CSA[3:0]). All broadcast com-
mands are directed to aperture address 1705A and accompa-
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nied by the assertion of chip-select signal CSAO in this
embodiment. Modules 1700B and 1700C examine peripheral
select bits (e.g., bank bits) to determine whether to execute a
command directed to aperture address 1705A.

Chip-select signal CSAO is conveyed to modules 1700B
and 1700C in this embodiment to allow them to distinguish
between accesses to aperture address 1705A and the same
address in other ranks. For example, addresses 1710A,
1710B, and 1710C are identical to aperture address 1705A: a
memory controller (e.g. controller 144 of FIG. 1) uses the
chip-select signals to distinguish between ranks Routing
chip-select signal CSAO to module 1700C allows module
1700C to distinguish between commands directed to aperture
address 1705A and those directed to addresses 1710A or
1710B. Routing signal CSAO to module 1700B likewise
allows that module to distinguish between command directed
to aperture address 1705A and those directed to addresses
1710A or 1710C.

More or different chip-select signals can be routed among
the modules to provide greater flexibility in other embodi-
ments. [feach module has access to all chip-select signals, for
example, the chip-select signals can be decoded in lieu of
other peripheral select bits to select any one or combination of
aperture addresses. Moreover, the modules can support addi-
tional apertures under control of their respective chip-select
signals, as detailed above.

FIG. 18 depicts an address range 1800 spanning the three
memory modules 1700A, 1700B, and 1700C introduced in
FIG. 17 to illustrate how different memory modules can sup-
port broadcast commands without shared chip-select signals.
This embodiment may be useful, for example, when the rout-
ing of chip-select signals to more than one module is incom-
patible with legacy memory systems. In this example, all
broadcast commands are directed to four aperture addresses
1805A, one in each rank of module 1700A. The same address
in each rank of modules 1700B and 1700C, respectively
designated address 1805B and 1805C, is likewise set aside for
each rank in those modules to serve as an aperture. All mod-
ules consider commands directed to the assigned aperture
address in any rank of any module, and consider some form of
peripheral select bits to determine whether to respond. A
memory controller can thus issue commands to one or a
combination of modules 1700A-C. Because the aperture is
repeated for each rank, the modules can ignore the chip-select
signals. As in other examples, the modules can support addi-
tional apertures under control of their respective chip-select
signals.

Other embodiments identify broadcast commands using a
broadcast key. With reference to FIG. 5, for example, one
quad-word (e.g., at QWORD Index 7) for each column
address can be used to convey a 64-bit broadcast key. Each
module could then examine each column-access command
directed to the assigned aperture row address to determine
whether it carried the broadcast key. With reference to FIG.
19, an address range 1900 similar to those of FIGS. 17 and 18,
a single row address 1905A serves as the aperture for three
modules 1700A-C. Module 1700A can distinguish aperture
commands from other types of commands using chip-select
CSAQ, andmodules 1700B and 1700C can use the embedded
broadcast key to do the same.

The incorporation of keys to distinguish broadcast com-
mands reduces the effective payload of such commands.
There is also a probability that a non-broadcast command to
the aperture row many inadvertently express the key, and thus
be misinterpreted. For graphics applications, the result of
such an error would likely be insignificant (e.g., the creation
of'an erroneous graphic artifact). Further, a sixty-four bit key
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gives a low likelihood of a false signature, and more or fewer
bits can be used depending on the error sensitivity in a given
solution. The key can also be a function of other bits in the
broadcast command to reduce the likelihood of a false signa-
ture; this solution requires some processing overhead at both
ends of the memory channel. In some embodiments broadcast
commands can be disabled entirely for use with particularly
sensitive operations.

Returning to FIG. 13, module 1300 combines the ability to
accomplish peripheral processes, in the manner detailed pre-
viously, with support for DPP. SPD memory 1320 is initial-
ized at start-up, using well known techniques, to configure
bridge 1315 to manage a desired width. Module 1300 sup-
ports four data widths in this example, but more, fewer, or
different widths can be available in other embodiments.

FIG. 20A depicts a DPP memory system 2000 in which
each of eight modules 1300 is configured to support eight
direct data connections to a memory controller (e.g., control-
ler 144 of FIG. 1). The collection of modules 1300 is therefore
able to communicate data DQ of width 64. Using the example
of the leftmost two modules 1300, the far left module 1300 is
directly connected to the controller via data lines DQ[7:0],
and its neighbor via lines DQ[15:8]. An additional eight-wide
data path 2005 extending between these two modules is not
used in this configuration, and is therefore illustrated using a
dashed line. The same command and address bus CA extends
to each module 1300 via bufters 2010 that can be provided to
ensure the modules do not unduly load the command and
address signals, and consequently adversely impact signal
integrity or speed performance.

FIG. 20B depicts a DPP memory system 2007 in which
each of four modules 1300 is configured to support sixteen
direct data connections to the memory controller. Using the
example of the leftmost module 1300, that module is directly
connected to the controller via data lines DQ[15:0] (i.e., both
set DQ[7:0] and set DQ[15:8]). Data path 2005 connects lines
DQJ15:8] to ASIC 130 to provide the additional eight data
connections. In some embodiments these connections are
made using a shorting module 2055 in place of the absent
module 1300. Other alternatives, such as various types of
switches, shorting connectors, and trace options on printed
circuit boards, might also be used to establish the requisite
additional data connections. In still other embodiments the
modules are fixed in place, as by soldering, in which case they
are configured at manufacturing.

Returning to FIG. 13, module 1300 has state storage, such
as SPD memory 1320, that is one-time or repeatedly pro-
grammable to indicate different data widths. The pro-
grammed state is used within bridge 1315 to set the effective
data width of module 1300. Various types of state storage are
possible. In the described embodiment, the state storage takes
the form of a width selection register or latch. This type of
state can be easily changed via software during system opera-
tion, allowing a high degree of flexibility, and making con-
figuration operations that are transparent to the end user.
However, other types of state storage are possible, including
but not limited to manual jumper or switch settings. In any
event, the value residing in the state storage changes or is
changed when a module 1300 is added or removed from the
system.

The memory capacity of each module 1300 does not
change with width. Rather, wider data widths provide fewer
address locations, and vice versa. Bridge circuit 156 is con-
figurable to communicate x64, x32, x16, or x8 data via all or
a subset of data lines DQ[63:0]. Data in widths less than x64
are assembled into x64 columns and communicated between
main memory 120 and bridge 1315 via a 64-line bus. In other
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embodiments narrower data widths access fewer memory
devices, or the devices themselves are width configurable.

The width configuration of installed memory modules
1300 need not be apparent to the memory controller. With
reference to system 2000 of FIG. 20, for example, system
2000 can handle routine memory transactions conventionally.
The memory controller issues commands CA associated with
x64 data on lines DQ[63:0], and each of the eight installed
modules 1300 manages one-eighth of the data associated with
the command.

Each module 1300 in the different width configurations of
FIGS. 20A and 20B is capable of receiving commands
directed to its respective peripheral processor. Peripheral
commands can be conveyed to the modules simultaneously,
with the number of simultaneous commands being equal to
the number of modules 1300.

FIG. 21 illustrates a data structure 2100 that a peripheral
driver (e.g., driver 146 of FIG. 1) assembles and stores in a
cache to convey instructions and data to the OPBA command
ports of eight x8 modules 1300 in accordance with the
example of FIG. 20A.

The memory controller communicates data over lines
DQ[64:0] in bursts of eight. Peripheral commands are not that
wide, however, as each module 1300 receives peripheral com-
mands via only eight DQ lines. Peripheral commands are thus
conveyed over the data lines as x8 bytes, again in bursts of
eight, for a total of 64 bits. Modules 1300 can distinguish
between peripheral commands and data in the manner
detailed above in connection with earlier embodiments.

Each burst is directed to a single column address, and the
format for each burst to the aperture address is as detailed in
FIG. 21 in this embodiment. With reference to data bit field
D7, which corresponds to data lines DQ[63:56] and one of
eight modules 1300, commands to column address zero
include a Opcode OP7[7:0] at byte index zero; a burst-length
field BL7[7:0] at byte index one; a write-mask bit M7 at one
of eight bit positions in byte index 2. The five remaining bytes
at indices three through seven are reserved.

Continuing with data field D7, a burst directed to column
address 1 expresses a 64-bit address A7[63:0] as a burst of
eight bytes 7:0; a burst directed to column address 2 includes
64 bits of write data WD7[63:0]; a burst directed to column
address 3 conveys a write-data mask WM?7[63:0]; a burst to
any of the remaining column addresses 3:255 conveys addi-
tional write data. The remaining seven modules receive simi-
lar information via their respective data bit fields D[6:0].

FIG. 22 illustrates a data structure 2200 that a peripheral
driver (e.g., driver 146 of FIG. 1) assembles and stores in a
cache to convey instructions and data to the OPBA command
ports of thirty-two modules 1300, eight x8 modules on each
of four memory channels. The modules are dual in-line
memory modules (DIMMs) in this example, but other module
types can also be used. Data structure 2200 is similar to data
structure 2100 of FIG. 21, but the format is extended to the
four channels Ch[3:0] identified in the leftmost column. A
four-channel memory system with fewer modules per chan-
nel is depicted in FIG. 7. Some embodiments additionally
support PSB bit fields in support of broadcast commands in
the manner detailed in connection with FIGS. 13, 14, 15A,
and 15B.

FIG. 23 illustrates a data structure 2300 that a peripheral
driver assembles and caches to convey instructions and data
to the OPBA command ports of four x16 modules 1300 in
accordance with one embodiment of the example of FIG.
20B. Due to the greater number of DQ lines, the memory
controller can communicate peripheral commands and
related information as bursts of sixteen-bit words. Because

10

20

30

40

45

55

60

22

the words are twice as wide as in the x8 example, bursts are
only half as long to convey the same total of 64 bits. The
command format is otherwise identical to the example of
FIG. 21.

Memory controllers buffer write data while awaiting write
access. Memory controller that support “data forwarding”
can respond to a processor read request for buffered data by
forwarding the buffered data immediately rather than forcing
the write operation to the memory, followed by a read access.
In effect, the write buffer in the memory controller is used as
a data cache. Memory modules in accordance with some
embodiments support non-overlapping write and read
address spaces within the command aperture to prevent data
forwarding from interfering with commands directed to the
OPBA.

FIG. 24 provides an example of how a command aperture
2400 for a given memory channel can support non-overlap-
ping write and read address spaces. Aperture 2400 includes a
write command port at column address zero, a read status port
at column address one, a burst-read data port at column
addresses 64-127, and a burst-write data port at columns
128-255.

In operation, write commands directed to column address
zero can be used to fill addresses 128-255, and read command
directed to column address one can be used to read from
addresses 64-127. The write and read address spaces do not
overlap, so read commands are not directed to addresses that
are potentially cached in the memory controller. The separate
allocation of write and read address space thus avoids data
forwarding hazards for commands directed to the aperture.

FIG. 25A is a block diagram illustrating an enhanced
memory architecture. In FIG. 25A, computer system 2500
comprises CPU/memory controller subsystem 2510, /O con-
troller 2530, and memory modules 2520. CPU/memory con-
troller subsystem 2510 includes a CPU 2512 coupled to a
memory controller 2514. One or more memory modules 2520
are coupled to memory controller 2514 in subsystem 2510.
Each memory module 2520 includes a processor 2521 and
memory 2522. Memory 2522 typically contains instructions
and/or data used by the CPU 2512 and/or processor 2521. It
should be understood that CPU 2512 may include multiple
processor cores. CPU 2512 may include stacked die devices
having one or more processors and/or memory stacked using,
for example, though-silicon vias. CPU 2512 may include
and/or be a specialized processor such as, for example, a
digital signal processor, graphics processing unit (GPU), an
array processor, storage management processor, data analytic
processor (e.g., Hadoop distributed file system processor or a
MapReduce processor), pattern recognition processor, and/or
image manipulation processor (i.e., image processor). CPU
2512 can divide up and coordinate compute processes and
tasks among modules 2520.

Processor 2521 may also be referred to as a “compute
. ” “graphics processor,” “render-

engine,” “computing engine,

ing engine,” “processing unit,” “accelerator”, “offload
engine,” and/or GPU. Processor 2521 may include and/or be
a heterogeneous processing unit that includes the functions of
one or more of a CPU, GPU, video processor, etc. Processor
2521 may include, or be, a serial-ATA (SATA), serial attached
SCSI(SAS), eSATA, PATA, IEEE 1394, USB (all revisions),
SCSI Ultra, FiberChannel, Infiniband, Thunderbolt, or other
industry standard I/O interfaces (such as PCI-Express—
PCle). Processor 2521 may include, or be, a network proces-
sor unit (NPU) such as a TCP offload engine (TOE), a proto-
col translator (e.g., TCP over SATA, TCP over PCI-Express,
accelerated SCSI interconnect, etc.), and/or a protocol packet
translator. Processor 2521 may include, or be, a fixed function
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graphics processing unit, an encryption/decryption accelera-
tor/offload engine (e.g., for implementing/accelerating SSL.,
AEC, DEC, etc.), a digital signal processor (DSP), a signal
path processor, a Fourier transform processor, an inverse Fou-
rier transform processor, and/or a media format encoder/
decoder (e.g., JPEG, DVX, AVI, MP2, MP3, MP4, Blu-ray,
HD-DVD, DVD, etc.). It should also be understood that mod-
ule 2520 may be coupled to a local SSD/HDD and/or enter-
prise storage type systems such as external disks, external
disk arrays, JBODs, RAID arrays, tape drives, optical drives,
and the like.

Memory 2522 typically includes multiple memory devices
coupled together to form a block of storage space. Memory
2522 may be, or comprise, but is not limited to, SRAM,
DDR3, DDR4, DDRS5, XDR, XDR2, GDDR3, GDDR4,
GDDRS, LPDDR, and/or LPDDR2 and successor memory
standards and technologies. Memory 2522 may be or com-
prise a stack of devices such as a through-silicon-via (TSV)
stack and/or a hybrid memory cube (HMC). Further informa-
tion about HMC is available from the Hybrid Memory Cube
Consortium (http://hybridmemorycube.org/).

Each processor 2521 is capable of performing various
memory access and/or data processing functions. For the
embodiment shown in FIG. 25A, memory controller 2514 is
also coupled to an I/O controller 2530 which controls the flow
of'data into and out of the system. An optional video input port
(not shown in FIG. 25A) can provide data to memory con-
troller 2514. A display interface (not shown in FIG. 25A) can
provide data output to one or more devices (such as display
devices or storage devices). For systems which support video
input or capture capability, a video input port on the memory
controller 2514 is one way to handle the delivery of video
source data. Another means of delivery of video input data to
the system would include delivering the data from a periph-
eral module through the I/O controller 2530 to memory con-
troller 2514.

In the example of FIG. 25A, CPU/memory controller sub-
system 2510 is coupled to multiple distinct memory modules
2520. Each memory module 2520 includes a processor 2521
and memory. Each processor 2521 is capable of performing
various data processing functions. Thus, the processor 2521
on different (or the same) memory modules are capable of
performing different processing functions simultaneously
(i.e., parallel processing). The processors 2521 on different
(or the same) memory modules are capable of performing
vector parallel processing where functions are vectorized and
divided among the processors 2521. The processors 2521 on
different (or the same) memory modules are capable of per-
forming cluster parallel processing where the processors
2521 cooperate to work on the same problem simultaneously
(or concurrently). Further, each processor 2521 is capable of
communicating with other processors 2521 on other memory
modules 2520.

Each processor 2521 is capable of communicating with
other processors 2521 on other memory modules 2520 with
the aid of CPU 2512 and/or memory controller 2514. Mod-
ules 2520 and/or processors 2521 may be heterogeneous. In
other words, modules 2520 and/or processors 2521 may not
all be identical. Processors 2521 may include multiple pro-
cessor cores thatare not all identical. For example, processors
2521 may comprise a mix of CPU type and GPU type pro-
cessing cores. Modules 2520 and/or processors 2521 may
perform different functions at the same time. Modules 2520
and/or processors 2521 may be produced by different ven-
dors. Modules 2520 and/or processors 2521 produced by
different vendors may be added, subtracted, and used inter-
changeably in a plug-and-play manner. Modules 2520 and/or
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processors 2521 may function in parallel running indepen-
dent (and non-independent) copies of software, processes,
applications, and operating systems similar to how virtual
machines operate.

CPU 2512 can control memory controller 2514 to distrib-
ute particular processing tasks (such as graphical processing
tasks) to processors 2521, and can perform certain processing
tasks itself. These tasks may include data to be processed
and/or instructions to be executed. Although three memory
modules 2520 are shown in FIG. 25A, alternate system may
contain any number of memory modules coupled to memory
controller 2514. The ability to add and remove memory mod-
ules 2520 can provide an upgradeable and scalable memory
and computing architecture.

CPU 2512 may communicate with processor 2521 by read-
ing from, and writing to, an address aperture associated with
processor 2521. CPU 2512 can be configured to use any cache
policy supported by processor CPU 2512 to read from, and
write to, this address aperture (or portions thereof). However,
it should be understood that, in an embodiment, the most
useful cache policies may be limited to configuring the
address aperture (or portions thereof) to be treated by CPU
2512 as uncacheable memory (UC), write combining
memory (WC), or write back (WB). In an embodiment, these
cache policies may be combined with the use of certain
instructions (e.g., fence instructions, streaming load instruc-
tions, and/or streaming write instructions) to achieve an opti-
mal (e.g., highest) communication bandwidth CPU 2512 and
processor 2521. In addition, when the address aperture (or
portions thereof) are configured to be treated as WC or WB, at
least a minimum burst size may be used to achieve an optimal
(e.g., highest) communication bandwidth between CPU 2512
and processor 2521. In other words, small burst sizes (e.g.,
less than a certain, implementation dependent, number of
column addresses per burst) may result in less than optimal
communication bandwidth between CPU 2512 and processor
2521. Larger sizes (e.g., greater than a certain, implementa-
tion dependent, number of column addresses per burst) may
approach (or approximate) an optimal (e.g., highest) commu-
nication bandwidth between CPU 2512 and processor 2521.

It may also be useful to configure the address aperture (or
portions thereof) to be UC for testing, ease of implementa-
tion, and/or when the bandwidth between CPU 2512 and
processor 2521 is not a relatively high priority. Configuring
the address aperture (or portions thereof) to be WB may be
most useful for testing purposes. Configuring the address
aperture (or portions thereof) to be WC may, in some embodi-
ments, result in the highest bandwidth between CPU 2512
and processor 2521.

The architecture of FIG. 25A allows CPU 2512 to issue
high level primitive commands to the processors 2521 via
memory controller 2514. These high level primitive com-
mands may include graphics commands. This can reduce the
volume or bandwidth of data that must be communicated
between the memory controller 2514 and memory modules
2520. Thus, the partitioning of memory among multiple
memory modules 2520 improves data throughput relative to
systems in which a single CPU 2512 and/or graphics control-
ler performs all processing tasks. A bandwidth reduction
to/from CPU 2512 can occur because primitive commands
and data sent to memory modules 2520 typically require
significantly less data than the amount of data referenced
when rendering the primitive. This is because graphics primi-
tives are typically expressed at a higher level of abstraction.
For example, a tessellated surface involving many thousands
of primitives (i.e., triangles) is not send though as many
thousands of primitives. Instead, a parametric function
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describing the surface is sent though, thus saving memory
bandwidth. Additionally, the system partitioning described
allows aggregate bandwidth between processors 2521 and
memory 2522 to be much higher than the bandwidth between
memory controller 2514 and memory modules 2520. Thus,
the effective system bandwidth can increased for processing
tasks.

FIG. 25B is a block diagram illustrating an enhanced
memory architecture with allocated local memory. In FIG.
25B, computer system 2501 comprises CPU/memory con-
troller subsystem 2510, 1/O controller 2530, and memory
modules 2525. CPU/memory controller subsystem 2510
includes CPU 2512 coupled to memory controller 2514. One
or more memory modules 2525 are coupled to memory con-
troller 2514 in subsystem 2510. Each memory module 2525
includes a processor 2521, CPU memory 2523, and processor
memory 2524. CPU memory 2523 typically contains instruc-
tions and/or data used by the CPU 2512. Processor memory
2524 typically contains instructions and/or data used by pro-
cessor 2521. Processor memory 2524 may be a local memory
dedicated for use by processor 2521, such as a cache to other
memory, scratchpad memory, or memory on a system-on-a-
chip—SoC—that includes processor 2521. Processor
memory 2524 may be DRAM memory dedicated for use by
processor 2521, or DRAM memory that is flexibly allocated
between use by processor 2521 and use by CPU 2512.

FIG. 25C is a block diagram illustrating an enhanced
memory architecture. In FIG. 25C, computer system 2502
comprises CPU/memory controller subsystem 2510, /O con-
troller 2530, and memory modules 2551-2553. CPU/memory
controller subsystem 2510 includes a CPU 2512 coupled to a
memory controller 2514. One or more memory modules
2551-2553 are coupled to memory controller 2514 in sub-
system 2510. Each of memory modules 2551-2553 includes a
processor 2561-2563, respectively, and memory 2571-2573,
respectively. Memories 2571-2573 typically contain instruc-
tions and/or data used by the CPU 2512 and/or a processor
2561-2563 on a respective memory module 2551-2553. As
described herein, CPU 2512 can divide up and coordinate
compute processes and tasks among modules 2551-2553.

Each processor 2561-2563 is capable of performing vari-
ous memory access and/or data processing functions. It
should be understood that processors 2561-2563 on modules
2551-2553 correspond to processor 2521 on modules 2520
described herein. Accordingly, for the sake of brevity, the
discussion of the types of processors that processors 2561-
2563 can be, and the functionality of processors 2561-2563,
and their relationship to the other elements (e.g., CPU 2512)
of system 2502 will not be repeated here. Likewise, it should
be understood that memories 2571-2573 on modules 2551-
2553 correspond to memory 2522 described herein. Accord-
ingly, for the sake of brevity, the discussion of the types of
memory devices that memories 2571-2573 can be, the func-
tionality of memories 2571-2573 and their relationship to
other elements of system 2502 will not be repeated here.

FIG. 25D is a block diagram illustrating an enhanced
memory architecture with secured features. In FIG. 25D,
computer system 2503 comprises CPU/memory controller
subsystem 2510, I/O controller 2530, and memory modules
2526. CPU/memory controller subsystem 2510 includes
CPU 2512 coupled to memory controller 2514. One or more
memory modules 2526 are coupled to memory controller
2514 in subsystem 2514. Each memory module 2526
includes processor 2521, secure processor 2581, memory
2522, and nonvolatile memory 2582. Memory 2522 typically
contains instructions and/or data used by the CPU 2512 and/
or processor 2521. Nonvolatile memory 2582 typically con-
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tains instructions and/or data used by secure processor 2581.
For example, nonvolatile memory 2582 may contain data that
enable/disables various functions/circuitry on modules 2526.

The module 2526 illustrated in FIG. 25D includes a mul-
tiple time programmable nonvolatile memory 2582 and a
secure processor 2581. Secure processor 2581 may be used to
prevent module 2526 from being used for/in/by unautho-
rized: applications, systems, OEMs, configurations. Thus,
secure processor 2581 can be configured to allow only autho-
rized users to access nonvolatile memory 2582 which con-
trols and/or initializes module 2526. Secure processor 2581
can be configured so that certain functions of the module 2526
can only be performed if the correct key is provided. These
functions may relate to anti-counterfeiting measures; IP
licensing; video content protection (e.g., when processor
2521 is an MPEG decoder), and configuration for multiple
SKU’s (e.g., shutdown of processor 2521 cores on low cost
memory modules, etc.).

It should be understood that memory modules 2520,
memory modules 2525, memory modules 2526, and/or
memory modules 2551-2553 may be and/or contain elements
of memory module 110 and memory module 1110, described
previously. Thus, for example, processor 2521 may be, cor-
respond to, or function like, peripheral processor 135,
described previously. Similarly, it should be understood that
memory modules 2520, memory modules 2525, memory
modules 2526, and/or memory modules 2551-2553 may
include other circuitry not shown in FIG. 25A, FIG. 25B, or
FIG. 25C. For example, memory modules 2520, memory
modules 2525, memory modules 2526, and/or memory mod-
ules 2551-2553 may include, for example, ASIC 130 and/or
ASIC 1105, and/or any of their components, and/or function-
ality, as described previously, or hereinafter. Memory mod-
ules 2520, memory modules 2525, memory modules 2526,
and/or memory modules 2551-2553, ASIC 130 and/or ASIC
1105, and/or any of their components, and/or functionality, as
described previously, or hereinafter may be, or comprise,
package-on-package (POP) devices, through-silicon-via
packaged devices, die stacks, thinned dies, micro-bump pack-
ages, flip-chip stacked devices, flip-chip stacking of thinned
TSV micro-bumped die, die-to-substrate flip-chip attached
devices, die-to-die flip-chip micro-stacked devices, die-to-
wafer stacked device, or other present or future “module-in-
a-package” technologies.

FIG. 26A is a block diagram illustrating a compute accel-
erated memory module. FIG. 27A is a block diagram illus-
trating further detail of a compute accelerated memory mod-
ule. Memory module 2600 illustrated in FIG. 26A and FIG.
27A may be used as one or more of memory modules 2520,
memory modules 2525, and/or memory modules 2526, dis-
cussed herein. Memory module 2600 comprises integrated
circuit (IC) 2610, first rank of memory 2640-2648, second
rank of memory 2650-2658, DQ buffers 2660-2668, DQ con-
nections 2670, and command/address (C/A) connections
2680. IC 2610 can include local memory 2614, processor
2612, and logic 2616. In FIGS. 26 A-26C and FIGS. 27A-27C
local memory 2614 is shown as part of IC 2610. However, it
should be understood that in some embodiments local
memory 2614 may not be part of IC 2610. Local memory
2614 may comprise an integrated circuit(s) or module(s) (dis-
crete parts or through-silicon-via memory stack) separate
from IC 2610. Local memory 2614 may be, for example,
stacked with IC 2610. Similarly, first rank of memory 2640-
2648 and/or second rank of memory 2650-2658 may be, or
comprise, stacked integrated circuits or integrated circuit
packages.
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In the configuration shown in FIG. 26 A and FIG. 27A, C/A
signals received at C/A connections 2680 are buffered by IC
2610 and sent to memories 2650-2658 via links 2681. C/A
signals received at C/A connections 2680 are also buffered by
IC 2610 and sent to memories 2640-2648 via links 2682.
Thus, IC 2610 necessarily includes command/address inter-
faces (not explicitly shown in FIG. 26A) configured to con-
nect to memories 2640-2648 and memories 2650-2658. DQ
signals received/sent by DQ buffers 2660-2668 from DQ
connections 2670 are sent/received to/from memories 2650-
2658 via N bit wide links 2675. DQ signals received/sent by
DQ buffers 2660-2668 from DQ connections 2670 are sent/
received to/from memories 2640-2648 via N bit wide links
2674A. DQ signals received/sent by DQ buffers 2660-2668
from DQ connections 2670 are sent/received to/from IC 2610
via high speed unidirectional serial links 2676A. There are
two serial links 2676 A per DQ buffer 2660-2668—one for
sending data to IC 2610, and one for receiving data from IC
2610. In an embodiment, these serial links 2676 A operate at
N times the rate of DQ connections 2670. In another embodi-
ment, these serial links 2676 A operate at M times the rate of
DQ connections 2670, where M<=N. Thus, for example,
when N=8 and M=8, the serial links 2676 A are able to send/
receive data to/from IC 2610 at the same rate data is being
sent/received by memories 2640-2648 and 2650-2658. DQ
buffers 2660-2668 may be controlled by IC 2610 to send/
receive data on links 2676 A and/or capture DQ data by one or
more buffer control signals 2677A.

Processor 2612 can communicate with a memory control-
ler by emulating a range of memory (i.e., an aperture) as
described previously. Processor 2612 (or IC 2610) can send/
receive data via links 2676A and the DQ connections 2670
to/from the memory controller.

Two unidirectional (one read data, one write data) high-
speed serial connections between the DQ bufters 2660-2668
and IC 2610 provide for communication between the memory
controller and IC 2610. This allows data captured by the DQ
buffers (registers) 2660-2668 to be sent/received in parallel to
the memory ranks 2640-2648 and 2650-2658 while being
simultaneously sent/received to/from IC 2610 via the serial
links 2676 A. The serial links 2676 A operate at, for example,
8 times the rate of the DQ links 2674A and 2675 to the
memories 2640-2648 and 2650-2658. Serial links 2676A
may operate at, for example, 8x the DDR3 rate in order to
transfer to the processor, in the same amount of time as it
would take to complete a transfer to memory, the 8 bits being
transferred to/from the memory controller. In various
embodiments, serial links 2676 A may operate at other mul-
tipliers (e.g., 4x or 16x) and at, or more than, the data rates of
other memory technologies mentioned herein (e.g., DDR4,
DDRS, etc.) In FIG. 26A and FIG. 27A, all of the memory
ranks 2640-2648 and 2650-2658 are configured as operating
system (OS) visible memory (i.e., CPU memory 2523). Pro-
cessor 2612 can use local memory 2614 to perform its
assigned tasks and/or as a cache for one or both of memory
ranks 2640-2648 and 2650-2658.

In an embodiment, it should be understood that memory
module 2600 includes a memory interface (e.g., C/A connec-
tions 2680) configured to interface to a memory controller
(e.g., memory controller 2514 and/or memory controller
144.) Memory module 2600 includes an integrated circuit
device (e.g., IC 2610) that is coupled to the memory interface.
The integrated circuit device includes a processor (e.g., pro-
cessor 2612), a first command/address interface coupled to
the processor and configured to connect to a first plurality of
dynamic memory integrated circuits (e.g., the interface
coupled to links 2681), and a second command/address inter-
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face coupled to the processor and configured to connect to a
second plurality of dynamic memory integrated circuits (e.g.,
the interface coupled to links 2682).

Memory module 2600 also includes the first plurality of
dynamic memory integrated circuits (e.g., memories 2650-
2658), the second plurality of dynamic memory integrated
circuits (e.g., memories 2640-2648), and at least one data
buffer integrated circuit (e.g., one or more of DQ buffers
2660-2668). The first plurality of dynamic memory inte-
grated circuits are coupled to the first command/address inter-
face (e.g., by links 2681). The second plurality of dynamic
memory integrated circuits are coupled to the second com-
mand/address interface (e.g., by links 2682). The at least one
data buffer integrated circuit is coupled to the first plurality of
dynamic memory integrated circuits (e.g., by links 2674A)
and the second plurality of dynamic memory integrated cir-
cuits (e.g., by links 2675). The at least one data buffer inte-
grated circuit is coupled to the memory interface (e.g., DQ
connections 2670). The at least one data buffer integrated
circuit are each coupled to the integrated circuit device by at
least a read serial link and a write serial link (e.g., links
2676A).

DQ buffers 2660-2668 may communicate data from the
integrated circuit device in response to a transaction on the
memory interface that is directed to a memory aperture asso-
ciated with IC 2610 (for example, as described previously DQ
buffers 2660-2668 may transfer data to and from memories
2650-2658 and 2640-2648 at a first information rate (e.g., the
DDR3—or other memory technology mentioned herein—
byte rate) and links 2676 A may be configured to transfer data
to and from IC 2610 at a second information rate that is at least
the first information rate (e.g., the DDR3—or other memory
technologies mentioned herein—Dbyte rate or higher—or
equivalently, a bit rate of 8x the DDR3 byte rate, or higher).
Links 2676 A may be serial links, or may have a width greater
than one bit so long as the second information rate of links
2676A is at least the first information rate. IC 2610 may
include a local memory interface that is coupled to processor
2612. This local memory interface may be coupled to at least
one integrated circuit memory device (e.g., local memory
2614). It should also be understood that, in some embodi-
ments, links 2676A can use single-ended signaling and other
embodiments use differential signaling. [ikewise, in some
embodiments, links 2676 A can be unidirectional and in other
embodiments links 2676 A can be bidirectional.

In another embodiment, an integrated circuit device (e.g.,
IC 2610) may receive, from a memory interface (e.g., C/A
connections 2680), a first memory command directed to a first
rank of dynamic memory integrated circuit devices disposed
on the memory module (e.g., a read command directed to an
address stored in memories 2640-2648). The integrated cir-
cuitdevice can include a processor (e.g., processor 2612). For
example, IC 2610 may receive, via C/A connections 2680, a
memory read command from a memory controller. This
memory read command may select memories 2640-2648. IC
2610 may relay this command to memories 2640-2648
thereby initiating a read burst from memories 2640-2648.

In response to the first memory command, data from the
first rank of dynamic memory integrated circuit devices that is
associated with the first memory command is stored in at least
one data buffer integrated circuit. For example, in response to
a read command directed to an address stored in memories
2640-2648, DQ buffers 2660-2668 may latch (store) the read
data output by memories 2640-2648 as a response to the read
command (as relayed by IC 2610).

Under the control of the integrated circuit device, the data
associated with the first memory command is communicated
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from the at least one data buffer integrated circuit to the
memory interface such that the first rank of dynamic memory
integrated circuit devices are accessible to the memory con-
troller. For example, IC 2610 may use one or more buffer
control signals 2677A to cause DQ buffers 2660-2668 to
output the read data they latched onto DQ connections 2670.
The memory controller can receive this read data from DQ
buffers 2660-2668 thereby completing a read access, of
memories 2640-2648, by the memory controller.

The integrated circuit device may receive, from the
memory interface, a second memory command directed to the
first rank of dynamic memory integrated circuit devices (e.g.,
a second read command directed to an address stored in
memories 2640-2648). This memory read command may or
may not select memories 2640-2648. IC 2610 may optionally
relay this command to memories 2640-2648 thereby initiat-
ing a read burst from memories 2640-2648. IC 2610 may, for
example, intercept this read command and not relay it to
memories 2640-2648. This may reduce power consumption.
IC 2610 may use the memory cycles associated with this
command for its own purposes.

Inresponse to the second memory command, data from the
integrated circuit that is associated with the second memory
command is stored in at least one data buffer integrated cir-
cuit. For example, in response to a read command directed to
an aperture associated with IC 2610, IC 2610 may send, via
links 2676A, data to DQ buffers 2660-2668 to be latched
(stored).

Under the control of the integrated circuit device, the data
associated with the second memory command is communi-
cated from the at least one data buffer integrated circuit to the
memory interface such that data processed by the processor is
accessible to the memory controller. For example, IC 2610
may use one or more buffer control signals 2677A to cause
DQ buffers 2660-2668 to output, on DQ connections 2670,
the data received from IC 2610 via links 2676A. This data
may have been processed by processor 2612. The memory
controller can receive this read data from DQ buffers 2660-
2668 thereby completing a read access, by the memory con-
troller, of the aperture associated with IC 2610 (and thereby
also associated with processor 2612).

The integrated circuit device may also control the at least
one data buffer integrated circuit to communicate the data
associated with the first memory command to the integrated
circuit. For example, IC 2610 may use one or more buffer
control signals 2677A to cause DQ buffers 2660-2668 to
output the read associated with the first memory command
onto one or more links 2676A. In this manner, IC 2610 can
“snoop” all or part of the data associated with memory trans-
actions that read memories 2640-2648. In other words, 1IC
2610 can see and/or capture all or part of the data associated
with memory transactions that read memories 2640-2648 so
that IC 2610 may use this data and/or memory transactions for
its own purposes independent of the data stored in memories
2640-2648. For example, snooping may be used for cache-
coherency. Typical programs and data that may be used by
processor 2612 may exhibit spatial and temporal locality.
Thus, using local memory 2614 as a cache for dedicated
dynamic memory may provide a performance benefit.

The integrated circuit device may also be coupled to a
memory that its processor uses as a local memory or cache.
This cache may be used to cache data stored in the first rank
of' dynamic memory integrated circuit devices. The data sup-
plied to the at least one data buffer integrated circuit may have
been stored in this local memory (or cache) prior to being sent
by the integrated circuit device to the at least one data buffer
integrated circuit. For example, IC 2610 may satisfy the read
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of the aperture associated with IC 2610 using data that was
stored in local memory 2614 at one time or another prior to
the read of the aperture by the memory controller. Similar to
the access steps described above, a third memory command
may cause data stored in a second rank of dynamic memory
integrated circuit devices to be stored in the at least one data
buffer integrated circuit. For example, data stored in memo-
ries 2650-2658 may be read by the memory controller using
similar steps to previously described for accessing (and
snooping) memories 2640-2648.

A write to the first rank of dynamic memory integrated
circuit devices is performed in a similar manner to a read,
except with the data flows reversed. In other words, to per-
form a write to memories 2640-2648: (1) a write command is
received by IC 2610 via C/A connections 2680 and relayed to
memories 2640-2648; (2) the write data is latched from DQ
connections 2670 into DQ buffers 2660-2668; and, (3) the
write data is communicated to memories 2640-2648 via links
2674 A at the appropriate time. Likewise, a write to the aper-
ture associated with the integrated circuit device is performed
in a similar manner to a read with the data flows reversed. In
other words, to perform a write to the aperture associated with
1C2610: (1) a write command is received by IC 2610 via C/A
connections 2680 and may optionally be relayed to memories
2640-2648; (2) the write data is latched from DQ connections
2670 into DQ buffers 2660-2668; and, (3) the write data is
communicated to IC 2610 via links 2676 A. This write opera-
tion gives processor 2612 and any other part of IC 2610 access
to data being written to the aperture associated with IC 2610.
1C 2610 can also snoop data being written to memories 2640-
2648. In other words, IC 2610 can see and/or capture all or
part of the data associated with memory transactions that
write memories 2640-2648 so that IC 2610 may use this data
and/or memory transactions for its own purposes independent
of the data stored (or being stored) in memories 2640-2648.

FIG. 268 is a block diagram illustrating a compute accel-
erated memory module with dedicated memory. FIG. 27B is
a block diagram illustrating further detail of a compute accel-
erated memory module with dedicated memory. Memory
module 2601 illustrated in FIG. 26B and FIG. 27B may be
used as one or more of memory modules 2620 and/or memory
modules 2625, discussed herein. Memory module 2601 com-
prises IC 2610, first rank of memory 2640-2647, second rank
of memory 2650-2658, DQ buffers 2660-2668, DQ connec-
tions 2670, and C/A connections 2680. IC 2610 can include
local memory 2614, processor 2612, and logic 2616.

Inthe configuration shown in FIG. 26B and FIG. 27B, C/A
signals received at C/A connections 2680 are buffered by IC
2610 and sent to memories 2650-2658 via links 2681. C/A
signals received at C/A connections 2680 can be buffered by
1C 2610 and sent to memories 2640-2648 via links 2682. C/A
signals sent to memories 2640-2648 via links 2682 can also
be internally generated by IC 2610 so that processor 2612 can
directly access memories 2640-2648. DQ signals received/
sent by DQ buffers 2660-2668 from DQ connections 2670 are
sent/received to/from memories 2650-2658 via N bit wide
links 2675.

DQ signals received/sent by DQ buffers 2660-2668 from
DQ connections 2670 are sent/received to/from IC 2610 via
high speed unidirectional serial links 2676B. There are two
serial links 2676B per DQ buffer 2660-2668—one for send-
ing data to IC 2610, and one for receiving data from IC 2610.
In an embodiment, these serial links 2676B operate at N times
the rate of DQ connections 2670. In another embodiment,
these serial links 2676B operate at M times the rate of DQ
connections 2670, where M<=N. Thus, for example, when
N=8 and M=8, the serial links 26768 are able to send/receive
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data to/from IC 2610 at the same rate data is being sent/
received by memories 2650-2658. DQ signals received/sent
by IC 2610 from/to DQ buffers 2660-2668 can be sent/re-
ceived to/from memories 2640-2648 in parallel. Internally
generated DQ signals (i.e., data bound from/to processor
2612) sent/received by IC 2610 can be sent/received to/from
memories 2640-2648 in parallel via links 2674B. Accord-
ingly, memories 2640-2648 can be configured to operate as
processor memory 2524. DQ buffers 2660-2668 may be con-
trolled by IC 2610, using one or more buffer control signals
2677B, to send/receive data on link 2676 B and/or capture DQ
data.

Processor 2612 can communicate with a memory control-
ler by emulating a range of memory (i.e., an aperture). The
memory controller can communicate with memories 2640-
2648 via IC 2610. The memory controller can communicate
datato memories 2640-2648 via a broadcast write received by
1C2610. The broadcast write data can be received by IC 2610
via DQ buffers 2660-2668 as describe previously. Processor
2612 (or IC 2610) can send/receive data via DQ connections
2670 to/from the memory controller. C/A connections 2680
can be buffered by IC 2610 and distributed separately to each
rank 2640-2648 and 2650-2658.

Thus it can be seen in FIG. 26B and FIG. 27B a first rank of
memory 2640-2648 on memory module 2601 is connected in
parallel (i.e., x8) to IC 2610 (and thereby coupled in parallel
to processor 2612). This first rank 2640-2648 may act as
dedicated memory for processor 2612 (i.e., like processor
memory 2524). A second rank 2650-2658 is connected in
parallel to the DQ buffers 2660-2668 to act as operating
system (OS) visible memory (i.e., like CPU memory 2523).
In this solution, one of the memory ranks 2650-2658 is con-
figured as OS visible memory. A second of the memory ranks
2640-2648 is configured as memory dedicated for use by IC
2610. Processor 2612 may also use local memory 2614 to
perform its assigned tasks.

Two unidirectional (one read data, one write data) high-
speed serial connections between the DQ bufters 2660-2668
and IC 2610 provide for communication between the memory
controller and IC 2610. This allows data captured by the DQ
buffers (registers) 2660-2668 to be sent/received in parallel
to/from memories 2650-2658 (i.e., the CPU memory 2523
rank) while being simultaneously sent/received to/from IC
2610 (and thereby processor 2612) via serial links 2676B.
Serial links 26768 can operate at, for example, 8 times the
clock rate of the DQ links 2675 to the memories 2650-2658.
It should also be understood that, in some embodiments, links
26768 can use single-ended signaling and other embodi-
ments use differential signaling. [.ikewise, in some embodi-
ments, links 26768 can be unidirectional and in other
embodiments links 2676B can be bidirectional.

In an embodiment, it should be understood that memory
module 2601 includes a memory interface (e.g., C/A connec-
tions 2680) configured to interface to a memory controller
(e.g., memory controller 2514 and/or memory controller
144.) Memory module 2601 includes an integrated circuit
device (e.g., IC 2610) that is coupled to the memory interface.
The integrated circuit device includes a processor (e.g., pro-
cessor 2612), a first command/address interface coupled to
the processor (e.g., the interface coupled to links 2682) and a
first data interface (e.g., the interface coupled to links 2674B).
The first command/address interface and the first data inter-
face are configured to connect to a first plurality of dynamic
memory integrated circuits. The integrated circuit device also
includes a second command/address interface coupled to the
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processor and configured to connect to a second plurality of
dynamic memory integrated circuits (e.g., the interface
coupled to links 2681).

Memory module 2601 also includes the first plurality of
dynamic memory integrated circuits (e.g., memories 2640-
2648), the second plurality of dynamic memory integrated
circuits (e.g., memories 2650-2658), and at least one data
buffer integrated circuit (e.g., one or more of DQ buffers
2660-2668). The first plurality of dynamic memory inte-
grated circuits are coupled to the first command/address inter-
face (e.g., by links 2682). The first plurality of dynamic
memory integrated circuits are also coupled to the first data
interface (e.g., by links 2674B). The second plurality of
dynamic memory integrated circuits are coupled to the sec-
ond command/address interface (e.g., by links 2681).
Because the DQ pins of the first plurality of dynamic memory
integrated circuits are coupled to the first data interface, the
first plurality of dynamic memory integrated circuits are not
directly accessible to a memory controller. However, because
the DQ pins of the first plurality of dynamic memory inte-
grated circuits are coupled to the first data interface, the first
plurality of dynamic memory integrated circuits are directly
accessible by IC 2610 (and thereby directly accessible by
processor 2612).

The at least one data buffer integrated circuit is coupled to
the second plurality of dynamic memory integrated circuits
(e.g., by links 2675). The at least one data buffer integrated
circuit is coupled to the memory interface (e.g., DQ connec-
tions 2670). The at least one data buffer integrated circuits are
each coupled to the integrated circuit device by at least a read
serial link and a write serial link (e.g., links 2676B).

The at least one data buffer integrated circuit may commu-
nicate data from the integrated circuit device in response to a
transaction on the memory interface that is directed to a
memory aperture associated with the integrated circuit device
(for example, as described previously). The at least one data
buffer integrated circuit may transfer data to and from memo-
ries 2650-2658 at a first information rate (e.g., the DDR3 byte
rate) and the links 2676B may be configured to transfer data
to and from the integrated circuit device at a second informa-
tion rate that is at least the first information rate (i.e., the
DDR3 byte rate or higher—or equivalently, a bit rate of 8 the
DDR3 byte rate, or higher). In various embodiments, serial
links 2676B may operate at other multipliers (e.g., 4x or 16x)
and at, or more than, the data rates of other memory technolo-
gies mentioned herein (e.g., DDR4, DDRS, etc.) The links
26768 may be serial links, or may have a width greater than
one bit so long as the second information rate of the links
26768 is at least the first information rate. The integrated
circuit device may include a local memory interface that is
coupled to the processor. This local memory interface may be
coupled to at least one integrated circuit memory device.

In an embodiment, memory module 2601 may be operated
similar to memory module 2600 to read and write data from a
first memory rank (e.g., memories 2650-2658). However,
because DQ signals of the second rank of memory (e.g.,
memories 2640-2648) on memory module 2601 are directly
coupled to the integrated circuit device (e.g., IC 2610), IC
2610 (and thereby processor 2612) can directly access (i.e.,
read and write) the second rank of memory without the inter-
mediate step of storing the data the at least one data buffer
integrated circuit (e.g., DQ buffers 2660-2668). Thus, the
second rank of memory may be referred to as being “dedi-
cated” to the processor while the first rank of memory oper-
ates in a “standard” fashion.

FIG. 26C is a block diagram illustrating a compute accel-
erated memory module with flexible memory. FIG. 27C is a
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block diagram illustrating further detail of a compute accel-
erated memory module. Memory module 2602 illustrated in
FIG. 26C and FIG. 27C may be used as one or more of
memory modules 2520, memory modules 2525, and/or
memory modules 2526, discussed herein. Memory module
2602 comprises IC 2610, first rank of memory 2640-2648,
second rank of memory 2650-2658, DQ buffers 2660-2668,
DQ connections 2670, and C/A connections 2680. IC 2610
can include local memory 2614, processor 2612, and logic
2616.

In the configuration shown in FIG. 26C and FIG. 27C, C/A
signals received at C/A connections 2680 are buffered by IC
2610 and sent to memories 2650-2658 via links 2681. C/A
signals received at C/A connections 2680 can be buffered by
1C 2610 and sent to memories 2640-2648 via links 2682. C/A
signals sent to memories 2640-2648 via links 2682 can also
be internally generated by IC 2610 so that processor 2612 can
access memories 2640-2648. DQ signals received/sent by
DQ buffers 2660-2668 from DQ connections 2670 are sent/
received to/from memories 2650-2658 via N bit wide links.
DQ signals received/sent by DQ buffers 2660-2668 from DQ
connections 2670 and/or IC 2610 are sent/received to/from
memories 2640-2648 via N bit wide links 2674A. DQ signals
received/sent by DQ buffers 2660-2668 from DQ connec-
tions 2670 and/or memories 2640-2648 are sent/received
to/from IC 2610 via high speed unidirectional serial links
2676C. In an embodiment, there are four serial links 2676C
per DQ buffer 2660-2668—two for sending data to IC 2610,
and two for receiving data from IC 2610. These serial links
2676C operate at, for example, at least N times the rate of DQ
connections 2670. Thus, for example, when N=8, the serial
links 2676C are able to send/receive data to/from IC 2610 at
least the same rate, or faster, than data is being simultaneously
sent/received by DQ connections 2670 and memories 2640-
2648.

Processor 2612 can communicate with a memory control-
ler by emulating a range of memory (i.e., an aperture). Pro-
cessor 2612 (or IC 2610) can send/receive data via the DQ
lines to/from the memory controller. C/A signal lines 2680
can be buffered by IC 2610 and distributed separately to each
rank 2640-2648 and 2650-2658. C/A signals 2682 can be
internally generated by IC 2610 so that processor 2612 can
access memories 2640-2648.

In this configuration, one of the memory ranks 2650-2658
is configured as OS visible memory. A second of the memory
ranks 2640-2648 can be configured as memory dedicated for
use by IC 2610, or as OS visible memory. Processor 2612 may
also use local memory 2614 to perform its assigned tasks.

Two unidirectional (one read data, one write data) high-
speed serial connections between DQ buffers 2660-2668 and
the processor can provide for communication between the
memory controller and IC 2610. Two additional unidirec-
tional (one read data, one write data) high-speed serial con-
nections between DQ buffers 2660-2668 and IC 2610 can
provide for communication between processor 2612 and the
dedicated memory rank 2640-2648 (if so configured). The
additional high-speed serial connections can be made pos-
sible by repurposing IC 2610 pins that served as DQ pins for
the dedicated memory configuration. It be understood that, in
some embodiments, links 2676C can use single-ended sig-
naling and other embodiments use differential signaling.
Likewise, in some embodiments, links 2676C can be unidi-
rectional and in other embodiments links 2676C can be bidi-
rectional.

From the foregoing, it should be understood that C/A con-
nections 2680 and/or DQ connections 2670 comprise a
memory interface configured to interface with a memory
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controller. Integrated circuit device 2610 is coupled to this
interface. Integrated circuit device 2610 includes a processor
2612, an interface configured to connect to a first rank of
dynamic memory integrated circuit devices 2640-2648, and
an interface configured to connect to a second rank of
dynamic memory integrated circuit device 2650-2658.
Memory module 2602 includes a first rank of dynamic
memory integrated circuit devices 2640-2648. Memory mod-
ule 2602 can be configured by IC 2610, and the way it controls
DQ buffers 2660-2668, to make this first rank of dynamic
memory integrated circuit devices 2640-2648 either acces-
sible or inaccessible to the memory controller. Memory mod-
ule 2602 also includes a second rank of dynamic memory
integrated circuit devices 2640-2648. Memory module 2602
can be configured by IC 2610, and the way it controls DQ
buffers 2660-2668, to make this second rank of dynamic
memory integrated circuit devices 2650-2658 either acces-
sible or inaccessible to the memory controller. DQ buffers
2660-2668 are coupled to both the first rank of dynamic
memory integrated circuit devices 2640-2648 and the second
rank of dynamic memory integrated circuit devices 2650-
2658. DQ buffers 2660-2668 are coupled to IC 2610 by links
2676C. These links 2676C may comprise at least one serial
read link and at least one serial write link. In an embodiment,
links 2676C include two serial read links and two serial write
links for each DQ buffer 2660-2668. The links 2676C should
be configured to transfer data to and from each DQ buffer
2660-2668 at an information rate that is at least the informa-
tion rate each DQ buffer 2660-2668 is transferring data to the
first rank of dynamic memory integrated circuit devices 2640-
2648 and the second rank of dynamic memory integrated
circuit devices 2650-2658. In this manner, all of the informa-
tion transferred to and from the first rank of dynamic memory
integrated circuit devices 2640-2648 and the second rank of
dynamic memory integrated circuit devices 2650-2658 may
be transferred to IC 2610. This provides IC 2610 the ability to
“snoop” all of the data being sent to and from the first rank of
dynamic memory integrated circuit devices 2640-2648 and
the second rank of dynamic memory integrated circuit
devices 2650-2658.

Memory module 2602 may respond to transactions on C/A
connections 2680 that are directed to a memory aperture
associated with IC 2610 by communicating data from IC
2610 to DQ connections 2670. Integrated circuit device 2610
may also include a local memory interface that is configured
to connect to a local memory 2614. Memory module 2602
may include a local memory 2614 device that is coupled to
this local memory interface.

In an embodiment, it should be understood that memory
module 2602 includes a memory interface (e.g., C/A connec-
tions 2680) configured to interface to a memory controller
(e.g., memory controller 2514 and/or memory controller
144.) Memory module 2602 includes an integrated circuit
device (e.g., IC 2610) that is coupled to the memory interface.
The integrated circuit device includes a processor (e.g., pro-
cessor 2612), a first command/address interface coupled to
the processor and configured to connect to a first plurality of
dynamic memory integrated circuits (e.g., the interface
coupled to links 2681), and a second command/address inter-
face coupled to the processor and configured to connect to a
first plurality of dynamic memory integrated circuits (e.g., the
interface coupled to links 2682).

Memory module 2602 also includes the first plurality of
dynamic memory integrated circuits (e.g., memories 2650-
2658), the second plurality of dynamic memory integrated
circuits (e.g., memories 2640-2648), and at least one data
buffer integrated circuit (e.g., one or more of DQ buffers
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2660-2668). The first plurality of dynamic memory inte-
grated circuits are coupled to the first command/address inter-
face (e.g., by links 2681). The second plurality of dynamic
memory integrated circuits are coupled to the second com-
mand/address interface (e.g., by links 2682). The at least one
data buffer integrated circuit is coupled to the first plurality of
dynamic memory integrated circuits (e.g., by links 2674C)
and the second plurality of dynamic memory integrated cir-
cuits (e.g., by links 2675). The at least one data buffer inte-
grated circuit is coupled to the memory interface (e.g., DQ
connections 2670). The at least one data buffer integrated
circuit are each coupled to the integrated circuit device by at
least a read serial link and a write serial link (e.g., links
2676C).

The at least one data buffer may communicate data from
the integrated circuit device in response to a transaction on the
memory interface that is directed to a memory aperture asso-
ciated with the integrated circuit device (for example, as
described previously). The at least one data buffer may trans-
fer data to and from memories 2650-2658 and 2640-2648 at a
first information rate (e.g., the DDR3 byte rate) and the links
2676C may be configured to transfer data to and from the
integrated circuit device at a second information rate that is at
least the first information rate (e.g., the DDR3 byte rate or
higher—or equivalently, a bit rate of 16x the DDR3 byte rate,
or higher). In various embodiments, serial links 2676C may
operate at other multipliers (e.g., 4x or 16x) and at, or more
than, the data rates of other memory technologies mentioned
herein (e.g., DDR4, DDRS, etc.) The links 2676C may be
serial links, or may have a width greater than one bit, so long
as the second information rate of the links 2676C is at least the
first information rate. The integrated circuit device may
include a local memory interface that is coupled to the pro-
cessor. This local memory interface may be coupled to at least
one integrated circuit memory device.

In another embodiment, an integrated circuit device (e.g.,
1C 2610) receives, from a memory interface (e.g., C/A con-
nections 2680), a first memory command directed to a first
rank of dynamic memory integrated circuit devices disposed
on the memory module (such as a read command directed to
an address stored in memories 2640-2648). The integrated
circuit device can include a processor (e.g., processor 2612).
For example, IC 2610 may receive, via C/A connections
2680, a memory read command from a memory controller.
This memory read command may select memories 2640-
2648. 1C 2610 may relay this command to memories 2640-
2648 thereby initiating a read burst from memories 2640-
2648. The integrated circuit device may receive, from the
memory interface, a second memory command directed to a
second rank of dynamic memory integrated circuit devices
disposed on the memory module (such as a read command
directed to an address stored in memories 2650-2658). For
example, IC 2610 may receive, via C/A connections 2680, a
memory read command from a memory controller. This
memory read command may select memories 2650-2658. IC
2610 may relay this command to memories 2650-2658
thereby initiating a read burst from memories 2650-2658.

In response to the first memory command, data from the
first rank of dynamic memory integrated circuit devices thatis
associated with the first memory command is stored in at least
one data buffer integrated circuit. For example, in response to
a read command directed to an address stored in memories
2640-2648, DQ buffers 2660-2668 may latch (store) the read
data output by memories 2640-2648 as a response to the read
command (as relayed by IC 2610).

Under the control of the integrated circuit device, the data
associated with the first memory command is communicated
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from the at least one data buffer integrated circuit to the
memory interface such that the first rank of dynamic memory
integrated circuit devices are accessible to the memory con-
troller. For example, IC 2610 may use one or more buffer
control signals 2677C to cause DQ buffers 2660-2668 to
output the read data they latched onto DQ connections 2670.
The memory controller can receive this read data from DQ
buffers 2660-2668 thereby completing a read access, of
memories 2640-2648, by the memory controller.

The integrated circuit device may receive, from the
memory interface, a second memory command directed to the
first rank of dynamic memory integrated circuit devices (e.g.,
a second read command directed to an address stored in
memories 2640-2648). This memory read command may or
may not select memories 2640-2648. IC 2610 may optionally
relay this command to memories 2640-2648 thereby initiat-
ing a read burst from memories 2640-2648. IC 2610 may, for
example, intercept this read command and not relay it to
memories 2640-2648 in order to reduce power consumption,
or use the memory cycles associated with this command for
its own purposes.

In response to the second memory command, data from the
integrated circuit that is associated with the second memory
command is stored in at least one data buffer integrated cir-
cuit. For example, in response to a read command directed to
an aperture associated with IC 2610, IC 2610 may send, via
links 2676C, data to DQ buffers 2660-2668 to be latched
(stored).

Under the control of the integrated circuit device, the data
associated with the second memory command is communi-
cated from the at least one data buffer integrated circuit to the
memory interface such that data processed by the processor is
accessible to the memory controller. For example, IC 2610
may use one or more buffer control signals 2677C to cause
DQ buffers 2660-2668 to output the data received from IC
2610 via links 2676C. This data may have been processed by
processor 2612. The memory controller can receive this read
data from DQ buffers 2660-2668 thereby completing a read
access, by the memory controller, of the aperture associated
with IC 2610 (and thereby also associated with processor
2612).

The integrated circuit device may also control the at least
one data buffer integrated circuit to communicate the data
associated with the first memory command to the integrated
circuit. For example, IC 2610 may use one or more buffer
control signals 2677C to cause DQ buffers 2660-2668 to
output the read associated with the first memory command
onto one or more links 2676C. In this manner, IC 2610 can
“snoop” the all or part of the data associated with memory
transactions that read memories 2640-2648.

The integrated circuit device may also be coupled to a
memory that its processor uses as a local memory or cache.
This cache may be used to cache data stored in the first rank
of' dynamic memory integrated circuit devices. The data sup-
plied to the at least one data buffer integrated circuit may have
been stored in this local memory (or cache) prior to being sent
by the integrated circuit device to the at least one data buffer
integrated circuit. For example, IC 2610 may satisfy the read
of the aperture associated with IC 2610 using data that was
stored in local memory 2614 at a time prior to the read of the
aperture by the memory controller. Similar to the access steps
described above, a third memory command may cause data
stored in a second rank of dynamic memory integrated circuit
devices to be stored in the at least one data buffer integrated
circuit. For example, data stored in memories 2650-2658 may
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be read by the memory controller using similar steps to pre-
viously described for accessing (and snooping) memories
2640-2648.

A write to the first rank of dynamic memory integrated
circuit devices is performed in a similar manner to a read,
except with the data flows reversed. In other words, to per-
form a write to memories 2640-2648: (1) a write command is
received by IC 2610 via C/A connections 2680 and relayed to
memories 2640-2648; (2) the write data is latched from DQ
connections 2670 into DQ buffers 2660-2668; and, (3) the
write data is communicated to memories 2640-2648 via links
2675 at the appropriate time. Likewise, a write to the aperture
associated with the integrated circuit device is performed in a
similar manner to a read with the data flows reversed. In other
words, to perform a write to the aperture associated with IC
2610: (1) a write command is received by IC 2610 via C/A
connections 2680 and may optionally be relayed to memories
2640-2648; (2) the write data is latched from DQ connections
2670 into DQ buffers 2660-2668; and, (3) the write data is
communicated to IC 2610 via links 2677C. This write opera-
tion gives processor 2612 and any other part of IC 2610 access
to data being written to the aperture associated with IC 2610.
1C 2610 can also snoop data being written to memories 2640-
2648.

Memory module 2602 may receive a memory command
directed to memories 2640-2648. This memory command
may be received by IC 2610. In response to this memory
command, memories 2640-2648 may output data associated
with the command and DQ buffers 2660-2668 may store that
data. IC 2610 may then control DQ buffers 2660-2668 to
communicate this data to DQ connections 2670. This allows
memories 2640-2648 to be accessible to a memory controller
coupled to memory module 2602. IC 2610 may also control
DQ buffers 2660-2668 to communicate this data to IC 2610
via links 2676C. This allows IC 2610 to snoop data read from
memories 2640-2648.

Memory module 2602 may receive a second memory com-
mand directed to memories 2640-2648. This second memory
command may also be received by IC 2610. This second
memory command may be directed to an aperture associated
with IC 2610. In response to this memory command, inte-
grated circuit 2610 may output second data associated with
the second command (e.g., via links 2676C) and DQ buffers
2660-2668 may store that second data. IC 2610 may then
control DQ buffers 2660-2668 to communicate this second
data to DQ connections 2670. This allows data processed by
processor 2612 to be accessible to a memory controller
coupled to memory module 2602.

IC 2610 may send a third memory command to memories
2650-2658. This third memory command may instruct
memories 2650-2658 to retrieve third data from memories
2650-2658. In response to this memory command, memories
2650-2658 may output third data associated with the third
memory command and DQ buffers 2660-2668 may store that
third data. IC 2610 may then control DQ butfers 2660-2668 to
communicate this third data to DQ connections 2670. This
allows memories 2650-2658 to be accessible to a memory
controller coupled to memory module 2602.

IC 2610 may originate and send a fourth memory com-
mand to memories 2650-2658. This fourth memory com-
mand may instruct memories 2650-2658 to retrieve fourth
data from memories 2650-2658. In response to this fourth
memory command, memories 2650-2658 may output fourth
data associated with the fourth memory command and DQ
buffers 2660-2668 may store that fourth data. IC 2610 may
then control DQ buffers 2660-2668 to communicate this
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fourth data to IC 2610 via links 2676C. This allows memories
2650-2658 to be accessible to processor 2612.

Memory module 2602 may receive a memory command
directed to memories 2640-2648. This memory command
may be received by IC 2610. In response to this memory
command, data associated with the command may arrive at
DQ connections 2670 and DQ buffers 2660-2668 may store
that data. IC 2610 may then control DQ buffers 2660-2668 to
communicate this data to memories 2640-2648. This allows
memories 2640-2648 to be accessible to a memory controller
coupled to memory module 2602. IC 2610 may also control
DQ buffers 2660-2668 to communicate this data to IC 2610
via links 2676C. This allows IC 2610 to snoop data written to
memories 2640-2648.

Memory module 2602 may receive a second memory com-
mand directed to memories 2640-2648. This second memory
command may also be received by IC 2610. This second
memory command may be directed to an aperture associated
with IC 2610. To complete this memory command, second
data associated with the second memory command may
arrive at DQ connections 2670 and DQ buffers 2660-2668
may store that second data. IC 2610 may then control DQ
buffers 2660-2668 to communicate this second data to IC
2610 via links 2676C. This allows processor 2612 to access
the second data sent by the memory controller coupled to
memory module 2602.

1C 2610 may originate and send a third memory command
to memories 2650-2658. This third memory command may
instruct memories 2650-2658 to store third data in memories
2650-2658. In correspondence to this third memory com-
mand, IC 2610 may output (e.g., via links 2676C) third data
associated with the third memory command and DQ buffers
2660-2668 may store that third data. IC 2610 may then con-
trol DQ bufters 2660-2668 to communicate this third data to
memories 2650-2658. This allows memories 2650-2658 to be
write accessible to processor 2612.

1C 2610 may send a fourth memory command to memories
2650-2658. This fourth memory command may instruct
memories 2650-2658 to store fourth data in memories 2650-
2658. To complete this fourth memory command, fourth data
associated with the fourth command may arrive at DQ con-
nections 2670 and DQ buffers 2660-2668 may store that
fourth data. IC 2610 may then control DQ buffers 2660-2668
to communicate this fourth data to IC memories 2650-2658.
This allows memories 2650-2658 to be write accessible to the
memory controller coupled to memory module 2602.

FIG. 28 is a block diagram illustrating a subsystem for a
memory module. In FIG. 28, subsystem 2800 comprises pro-
cessor 2812, local memory 2814, logic 2816, memory con-
troller 2817, CA input interface 2896, multiplexor (MUX)
logic 2819, CA,, interface 2886, CA, interface 2887, high-
speed (HS) serial DQ interface #0 2878, and HS serial DQ
interface #1 2879. CA, interface 2886 is shown to be for
coupling to a DRAM bank (DRAM bank #0). CA, interface
2887 is shown to be for coupling to a DRAM bank (DRAM
bank #1). HS serial DQ interfaces #0 2878 and #1 2879 are
shown to be for coupling to DQ buffers. As can be seen in FIG.
28, MUX logic 2819 allows CA | interface to be controlled by
either CA input interface 2896 or memory controller 2817.
Thus, subsystem 2800 can either buffer CA signals received
via CA input interface 2896, or internally generate CA signals
(by memory controller 2817) in order to access memory
coupled to CA, interface 2887. Memory controller 2817 may
generate CA signals in response to requests from processor
2812. Accordingly, it can be seen that subsystem 2800 may be
used as IC 2610 in memory modules 2600, 2601, and/or 2602.
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As described herein, one or more memories 2571-2573 can
be configured as memory dedicated for use by processors
2561-2563, respectively, or as OS visible memory. When a
memory 2571-2573 is dedicated for use as OS (e.g., CPU
2512) visible memory, it has been described as “standard
mode.” In other words, the memory 2571-2573 is operating as
if its respective memory module 2551-2553 was a standard
memory module. When amemory 2571-2573 is dedicated for
use by the respective processor 2561-2563 on it respective
module 2551-2553, it has been described as “dedicated
mode.” In other words, a memory 2571-2573 is “dedicated”
to its respective processor 2561-2563. In particular, as
described herein, a memory 2571-2573 can be either under
the control of the CPU 2512, or under the control of a respec-
tive processor 2561-2563 on the memory module. To main-
tain compatibility with at least some memory controllers
2514, each memory 2571-2573 should not be allowed to be
under the control of both CPU 2512 and a processor 2561-
2563 at the same time.

The process of transitioning between modes begins when
an operator or program running on system 2502 decides to
change the mode of at least one module 2551-2553. A signal
is sent to an operating system routine that takes different
actions depending on whether the mode change is from stan-
dard to dedicated, or dedicated to standard.

The following list details a process of transitioning at least
one module 2551-2553 from dedicated mode to standard
mode. For the purposes of this discussion, memory 2571 on
module 2551 is transitioning from being dedicated to
memory 2571 to being under the control of CPU 2512. In
addition, if the data in memory 2571 is to be preserved, before
beginning the transitioning process detailed below, assume
that processor 2561 has flushed any caches (e.g., caches out-
side or inside of processor 2612) holding data bound for
memory 2571.

(1) Determine which processor 2561 memory pages stored
in memory 2571 have data being used by processor
2561. Processor 2561 can determine which memory
pages stored in memory 2571 have data by examining
memory management data structures (e.g., page table
entries or memory allocation structures) used by proces-
sor 2561.

(2) At least the memory pages stored in memory 2571 that
have data are removed or copied out of memory 2571.
This can be done by storing the data in memory 2571 to
disk. If it is not necessary to preserve the data stored in
memory 2571, the active memory pages stored in
memory 2571 may be cleared. The data in memory 2571
may be stored to disk or other nonvolatile storage. This
nonvolatile storage may be a solid-state disk drive or
other nonvolatile storage disposed on module 2551 (de-
scribed below). The data in memory 2571 may be stored
in another memory (not shown in FIG. 25C) that is under
the control of processor 2561. The memory receiving the
data may be on the same module 2551 as processor
2561, or a different module (e.g., module 2552 or mod-
ule 2553).

(3) Processor 2561 releases ownership of pages. Processor
2561 may release its ownership of the pages in memory
2571 by marking page table entries (PTEs) or memory
allocation data structures as unavailable to processor
2561.

(4) Once processor 2561 has release ownership of pages
the pages in memory 2571, processor 2561 notifies CPU
2512 that memory pages on memory 2571 are available
to be allocated.
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(5) CPU 2512 proceeds through its initialization process
for pages to be allocated by the CPU 2512. For example,
CPU 2512 may perform its page table initialization for
memory 2571. CPU 2512 and/or memory controller
2514 may also perform some initialization and/or basic
maintenance operations, such as calibration of a
memory channel or other routine memory initialization
routines (e.g., zeroing, testing, etc.) before the CPU
2512 begins allocating pages.

(6) At this point, the mode switch of memory 2571 from
being dedicated to processor 2561 to being under the
control of CPU 2512 is complete. CPU 2512 can now
allocate pages in memory 2571.

The following list details a process of transitioning at least
one module 2551-2553 from standard mode to dedicated
mode. For the purposes of this discussion, memory 2571 is
transitioning from being under the control of CPU 2512 to
being dedicated to processor 2561.

(1) Determine which CPU 2512 memory pages stored in
memory 2571 have data being used by CPU 2512. CPU
2512 can determine which memory pages stored in
memory 2571 have data by examining memory manage-
ment data structures (e.g., CPU 2512 page table entries
or OS memory allocation structures).

(2) Identify the physical pages corresponding to memory
2571 that are to be allocated by CPU 2512 for exclusive
use by processor 2561.

(3) Deallocate the physical pages corresponding to
memory 2571. This may be accomplished by executing
apage fault routine to cause one or more of these physi-
cal pages stored in memory 2571 to be copied to disk (or
another location in memory that is accessible to CPU
2512).

(4) Once all of the physical pages that were stored on
memory 2571 are cleared (or copied to disk so they can
be cleared or re-used), the CPU 2512 page table entries
are marked to indicate that they cannot be allocated by
CPU 2512.

(5) Once memory 2571 is cleared, CPU 2512 notifies pro-
cessor 2561 that it can use memory 2571. Processor
2561 may also perform some initialization and/or basic
maintenance operations, such as calibration of a
memory channel before processor 2561 can begin allo-
cating pages.

(6) At this point, the mode switch of memory 2571 from
being dedicated to CPU 2512 to being under the control
of processor 2561 is complete. Processor 2561 can now
allocate pages in memory 2571.

CPU 2512, and/or processor 2561 may use virtual address-
ing. When using virtual addressing, the process steps above
include identifying pages that are in physical memory stored
in memory 2571 and deallocating them from physical
memory. To accomplish this, the page table entries corre-
sponding to memory 2571 should be updated to indicate that
the pages are no longer available to be allocated.

With virtual memory (a.k.a., virtual addressing), more than
one process can be using a physical page at the same time.
This is one way that shared memory can be implemented.
When clearing out a physical page (e.g. faulting it out to disk),
each virtual page across all processes should be tracked down
to make sure that all processes know that the physical page is
no longer available and/or valid.

Linux implement a reverse mapping data structure called
an “object-based reverse mapping” structure. This data struc-
ture allows all virtual pages that map to a physical page to be
identified via a doubly-linked list structure that is associated
with one physical page. Each time a physical page is cleared
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out/faulted out to disk, the reverse mapping data structure
associated with that page is traversed (by CPU 2512 and/or
processor 2561), and each virtual page entry that points to that
physical page is modified to denote that the virtual page is no
longer mapped to physical memory. If the page is faulted out
to disk, then the next time a process refers to that memory, a
page fault will occur, and the page will be brought back into
memory in a different page frame. Since the pages corre-
sponding to memory 2571 have been marked as unavailable/
not-allocable to CPU 2512 or processor 2561, the page will be
brought back into memory that is not under the control of
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processor 2561 or CPU 2512, respectively. In this way, the
process of clearing data in physical pages from memory 2571
being controlled by the CPU 2512 or processor 2561 can
utilize existing page faulting mechanisms, as well as their
existing page table structures.

Table 1 further describes a process of transitioning memory
2571 from dedicated mode to standard mode. Again assume
that if the data in memory 2571 is to be preserved, before
beginning the transitioning process detailed below, processor
2561 will flush any caches holding data bound for memory
2571.

TABLE 1

M
@

Determine which memory 2571 pages processor 2561 has data in
a. processor 2561 can look at processor 2561°s memory management structures
Clear out memory 2571 (store data to disk, clear out pages)
a. Can page data out to disk
b.  Can terminate programs running on processor 2561 that use memory 2571
and/or wait until these programs end

(3) Identify physical addresses associated with memory 2571
a.  This identification depends on CPU 2512/memory controller 2514 mapping of
CPU 2512 physical addresses to modules 2551-2553.
b.  This mapping of CPU 2512 physical addresses to modules 2551-2553 may be
documented in system guides for system 2502.
(4) Identify CPU 2512 physical frames associated with CPU 2512 physical addresses
identified in step (3)
a.  This is determined by the CPU 2512°s Page Table Entries (PTEs)
b.  If processor 2561 is using virtual addressing, identify all virtual pages that
map to each physical frame
i Can use reverse mapping
i, Update each PTE to indicate that all virtual pages mapping to the
identified physical pages are unmapped
(5) Update CPU 2512 PTEs so frames are available to CPU 2512
a. perform necessary page table initialization
(6) Once all frames are available on a module 2551, signal CPU 2512 that it can allocate
them
a. CPU 2512 or memory controller 2514 may need to perform some initialization
and basic maintenance operations such as calibration of the memory channel
connected to modules 2551-2553 before CPU 2512 begins allocating pages
(7) Mode switch complete. CPU 2512 can now allocate pages in memory 2571
Table 2 further describes a process of transitioning memory
2571 from standard mode to dedicated mode. Note that the
40 existing processes on CPU 2512 can keep running. The pro-
cess detailed in Table 2 may occur in the background to
threads currently running on CPU 2512.
TABLE 2
(1)  Determine which memory 2571 pages are to be allocated to processor 2561.
(2) Determine what data the pages to be allocated to processor 2561 in memory 2571
have from CPU 2512 processes.
(3) CPU 2512 can use operating system mapping functions (e.g., object-based reverse
mapping structure)
(4)  Identify physical addresses associated with memory 2571
a.  Depends on system 2502 mapping
b.  Documented in system 2502 guides
(5)  Identify physical frames associated with the physical addresses identified in step (4)
a.  This is determined by CPU 2512°s Page Table Entries (PTEs)
(6) Determine if the physical frames identified in step (5) are occupied with data
a. Check PTEs to see if there is a valid mapping
(7)  Fault out occupied physical frames to disk
a. Use existing OS mechanism to fault out pages
b.  Use reverse mapping to identify virtual pages that map to each physical frame
(can be multiple virtual pages per physical frame)
¢.  Update PTEs to signify virtual addresses are no longer in physical frames
(8)  Once all physical pages are cleared, mark page table entries to indicate that these
pages cannot be allocated by the CPU 2512
(9) Notify processor 2561 that it owns memory 2571 once they are cleared
a. processor 2561 may need to perform some initialization and basic
maintenance operations like calibration of the memory channel before
IC 2610 begins allocating pages
(10)  Mode switch complete, processor 2561 can now begin allocating pages in memory

2571
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Memories 2571-2573 can be configured as memory dedi-
cated for use by processors 2561-2563, respectively, or as OS
visible memory on a rank by rank basis. In particular, as
described herein, memory rank 2640-2648 can be either
under the control of the CPU 2512, or under the control of IC
2610 on the memory module. To maintain compatibility with
at least some memory controllers 2514, the memory rank
2640-2648 should not be allowed to be under the control of
both the CPU 2512 and IC 2610 at the same time.

The process of transitioning between modes begins when
an operator or program running on system 2502 decides to
change the mode of at least one module 2602. A signal is sent
to an operating system routine that takes different actions
depending on whether the mode change is from standard to
dedicated, or dedicated to standard.

The following list details a process of transitioning at least
one module 2602 from dedicated mode to standard mode. For
the purposes of this discussion, memory rank 2640-2648 is
transitioning from being dedicated to IC 2610 to being under
the control of CPU 2512. In addition, if the data in memory
rank 2640-2648 is to be preserved, before beginning the tran-
sitioning process detailed below, assume that IC 2610 has
flushed any caches (e.g., local memory 2614 or cache(s)
inside of processor 2612) holding data bound for memory
rank 2640-2648.

(1) Determine which IC 2610 memory pages stored in
memory rank 2640-2648 have data being used by IC
2610. IC 2610 and/or processor 2612 can determine
which memory pages stored in memory rank 2640-2648
have data by examining memory management data
structures (e.g., page table entries or memory allocation
structures) used by processor 2612.

(2) At least the memory pages stored in memory rank
2640-2648 that have data are removed or copied out of
memory rank 2640-2648. This can be done by storing
the data in memory rank 2640-2648 to disk. If it is not
necessary to preserve the data stored in memory rank
2640-2648, the active memory pages stored in memory
rank 2640-2648 may be cleared. The data in memory
rank 2640-2648 may be stored to disk or other nonvola-
tile storage. This nonvolatile storage may be a solid-state
disk drive or other nonvolatile storage disposed on mod-
ule 2602 (described below). The data in memory rank
2640-2648 may be stored in another memory rank (e.g.,
memory rank 2650-2658) that is under the control of IC
2610. The memory rank receiving the data may be on the
same module 2602 as IC 2610, or a different module.

(3) IC 2610 releases ownership of pages. IC 2610 may
release its ownership of the pages on memory rank 2640-
2648 by marking page table entries (PTEs) or memory
allocation data structures as unavailable to IC 2610.

(4) Once IC 2610 has release ownership of pages the pages
on memory rank 2640-2648, IC 2610 notifies CPU 2512
that memory pages on memory rank 2640-2648 are
available to be allocated.

(5) CPU 2512 proceeds through its initialization process
for pages to be allocated by the CPU 2512. For example,
CPU 2512 may perform its page table initialization for
memory rank 2640-2648. CPU 2512 and/or memory
controller 2514 may also perform some initialization
and/or basic maintenance operations, such as calibration
of a memory channel or other routine memory initial-
ization routines (e.g., Zeroing, testing, etc.) before the
CPU 2512 begins allocating pages.

(6) At this point, the mode switch of memory rank 2640-
2648 from being dedicated to IC 2610 to being under the
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control of CPU 2512 is complete. CPU 2512 can now
allocate pages in memory rank 2640-2648.

The following list details a process of transitioning at least
one module 2602 from standard mode to dedicated mode. For
the purposes of this discussion, memory rank 2640-2648 is
transitioning from being under the control of CPU 2512 to
being dedicated to IC 2610.

(1) Determine which CPU 2512 memory pages stored in
memory rank 2640-2648 have data being used by CPU
2512. CPU 2512 can determine which memory pages
stored in memory rank 2640-2648 have data by exam-
ining memory management data structures (e.g., CPU
2512 page table entries or OS memory allocation struc-
tures).

(2) Identify the physical pages corresponding to memory
rank 2640-2648 that are to be allocated by CPU 2512 for
exclusive use by IC 2610.

(3) Deallocate the physical pages corresponding to
memory rank 2640-2648. This may be accomplished by
executing a page fault routine to cause one or more of
these physical pages stored in memory rank 2640-2648
to be copied to disk (or another location in memory that
is accessible to CPU 2512).

(4) Once all of the physical pages that were stored on
memory rank 2640-2648 are cleared (or copied to disk
so they can be cleared or re-used), the CPU 2512 page
table entries are marked to indicate that they cannot be
allocated by CPU 2512.

(5) Once memory rank 2640-2648 is cleared, CPU 2512
notifies IC 2610 that it can use memory rank 2640-2648.
IC 2610 may also perform some initialization and/or
basic maintenance operations, such as calibration of a
memory channel before the IC 2610 can begin allocating
pages.

(6) At this point, the mode switch of memory rank 2640-
2648 from being dedicated to CPU 2512 to being under
the control of IC 2610 is complete. IC 2610 can now
allocate pages in memory rank 2640-2648.

CPU 2512, IC 2610, and/or processor 2612 may use virtual
addressing. When using virtual addressing, the process steps
above include identifying pages that are in physical memory
stored in memory rank 2640-2648 and deallocating them
from physical memory. To accomplish this, the page table
entries corresponding to memory rank 2640-2648 should be
updated to indicate that the pages are no longer available to be
allocated.

With virtual memory (a.k.a., virtual addressing), more than
one process can be using a physical page at the same time.
This is one way that shared memory can be implemented.
When clearing out a physical page (e.g. faulting it out to disk),
each virtual page across all processes should be tracked down
to make sure that all processes know that the physical page is
no longer available and/or valid.

Linux implement a reverse mapping data structure called
an “object-based reverse mapping” structure. This data struc-
ture allows all virtual pages that map to a physical page to be
identified via a doubly-linked list structure that is associated
with one physical page. Each time a physical page is cleared
out/faulted out to disk, the reverse mapping data structure
associated with that page is traversed (by CPU 2512 and/or
processor 2612), and each virtual page entry that points to that
physical page is modified to denote that the virtual page is no
longer mapped to physical memory. If the page is faulted out
to disk, then the next time a process refers to that memory, a
page fault will occur, and the page will be brought back into
memory in a different page frame. Since the pages corre-
sponding to memory rank 2640-2648 have been marked as
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unavailable/not-allocable to CPU 2512 or processor 2612, the
page will be brought back into memory that is not under the
control of IC 2610 or CPU 2512, respectively. In this way, the
process of clearing data in physical pages from memory rank
2640-2648 being controlled by the CPU 2512 or IC 2610 can 5
utilize existing page faulting mechanisms, as well as their

46
Table 3 further describes a process of transitioning memory
rank 2640-2648 from dedicated mode to standard mode.
Again assume that if the data in memory rank 2640-2648 is to
be preserved, before beginning the transitioning process
detailed below, IC 2610 will flush any caches (e.g., local
memory 2614 or cache(s) inside of processor 2612) holding

existing page table structures.

data bound for memory rank 2640-2648.
TABLE 3

M
@

3

Q)

®

Q)

M

Determine which memory rank 2640-2648 pages IC 2610 has data in
a. IC 2610 can look at processor 2612°s memory management structures
Clear out memory rank 2640-2648 (store data to disk, clear out pages)
a. Can page data out to disk
b.  Can terminate programs running on processor 2612 that use memory rank
2640-2648 and/or wait until these programs end
Identify physical addresses associated with memory rank 2640-2648
a.  This identification depends on CPU 2512/memory controller 2514 mapping
of CPU 2512 physical addresses to modules 2520.
b.  This mapping of CPU 2512 physical addresses to modules 2520 may be
documented in system guides for system 2500.
Identify CPU 2512 physical frames associated with CPU 2512 physical addresses
identified in step (3)
a.  This is determined by the CPU 2512°s Page Table Entries (PTEs)
b. IfIC 2610 is using virtual addressing, identify all virtual pages that
map to each physical frame
i Can use reverse mapping
i, Update each PTE to indicate that all virtual pages mapping to the
identified physical pages are unmapped
Update CPU 2512 PTEs so frames are available to CPU 2512
a. perform necessary page table initialization
Once all frames are available on a module 2520, signal CPU 2512 that it can
allocate them
a. CPU 2512 or memory controller 2514 may need to perform some initialization
and basic maintenance operations such as calibration of the memory channel
connected to modules 2520 before CPU 2512 begins allocating pages
Mode switch complete. CPU 2512 can now allocate pages in memory rank 2640-2648

Table 2 further describes a process of transitioning memory
35 rank 2640-2648 from standard mode to dedicated mode. Note
that the existing processes on CPU 2512 can keep running.
The process detailed in Table 4 may occur in the background

to threads currently running on CPU 2512.

TABLE 4
(1)  Determine which memory rank 2640-2648 pages are to be allocated to IC
2610/processor 2612.
(2)  Determine what data the pages to be allocated to IC 2610 in memory rank 2640-
2648 have from CPU 2512 processes.
(3) CPU 2512 can use operating system mapping functions (e.g., object-based
reverse mapping structure)
(4) Identify physical addresses associated with memory rank 2640-2648
a. Depends on system 2500 mapping
b.  Documented in system 2500 guides
(5) Identify physical frames associated with the physical addresses identified in
step (4)
a. This is determined by CPU 2512’s Page Table Entries (PTEs)
(6) Determine if the physical frames identified in step (5) are occupied with data
a. Check PTEs to see if there is a valid mapping
(7)  Fault out occupied physical frames to disk
a. Use existing OS mechanism to fault out pages
b.  Use reverse mapping to identify virtual pages that map to each physical
frame (can be multiple virtual pages per physical frame)
¢.  Update PTEs to signify virtual addresses are no longer in
physical frames
(8)  Once all physical pages are cleared, mark page table entries to indicate that
these pages cannot be allocated by the CPU 2512
(9) Notify IC 2610 that it owns the memory rank 2640-2648 once they are cleared
a. IC 2610 may need to perform some initialization and basic maintenance
operations like calibration of the memory channel before IC 2610 begins
allocating pages
(10)  Mode switch complete, IC 2610 can now begin allocating pages in memory rank

2640-2648




US 9,275,733 B2

47

FIG. 29 is a block diagram illustrating a subsystem for a
memory module. In FIG. 29, subsystem 2901 comprises sub-
system 2900 and local memory 2924. Subsystem 2900 com-
prises processor 2912, logic 2916, memory controller 2917,
CA input interface 2996, multiplexor (MUX) logic 2919,
CA, interface 2986, CA interface 2987, and high-speed (HS)
serial DQ interface(s) 2978. Subsystem 2900 also includes
memory/cache controller(s) 2918. Memory/cache controller
2918 is operatively coupled to local memory 2924. Local
memory 2924 includes a cache memory partition 2925 and a
processor memory partition 2926. Local memory 2924 may
be operatively coupled to subsystem 2900 by one or more
memory channels. Accordingly, it can be seen that subsystem
2900 may beused as IC 2610 in memory modules 2600,2601,
and/or 2602 and that subsystem 2901 may be disposed on
memory modules 2600, 2601, and/or 2602.

In an embodiment, local memory 2924 is a different type of
dynamic memory than the dynamic memory coupled to CA,
interface 2986 and/or CA, interface 2987. For example, the
type of dynamic memory coupled to the CA, interface 2987
may be DDR3 and the type of memory connected as local
memory 2924 may be XDR. Thus, accesses via the CA;
interface and accesses to local memory 2924 may have simi-
lar latency (e.g., latency ratio ranges of, for example, 0.5-1.5,
0.7-1.3, or 0.9-1.1) but local memory 2924 may be accessed
with significantly higher throughput (i.e., information rate).
For example, a local memory 2924 accessed via 4 XDR
memory channels may be accessed with 4-6 times (a.k.a., 4x
to 6x) the bandwidth as a single DDR3 memory channel.
Other bandwidth ratio ranges may be, for example, 2x-8x,
4x-9%, 3x-5x, and 3x-10x. Other examples of types of
memory that may typically be coupled to CA,, interface 2986
and/or CA, interface 2987 include, but are not limited to,
DDR3, DDR4, and DDRS5. Other examples of higher band-
width types of memory that may typically be connected as
local memory 2924 include, but are not limited to, XDR,
XDR2, GDDR3, GDDR4, and GDDRS. Local memory 2924
may be, or include, a stack of memory devices such as a
through-silicon-via (TSV) stack and/or a hybrid memory
cube (HMC).

In an embodiment, local memory 2924 can be partitioned
(or entirely dedicated for one use or the other) into a processor
memory partition 2926 for use as a fast scratch pad memory
and into a cache memory partition 2925 for use as a cache to
the much larger memory coupled to CA,, interface 2986 and/
or CA, interface 2987. In other words, either or both of cache
memory partition 2925 and processor memory partition 2926
may be a proper subset of local memory 2924 and used for
their corresponding purposes, respectively.

It may be more advantageous for all of local memory 2924
to serve as cache for rank #1. For example, in a graphics
application where there are a lot of textures to process, a large
cache memory partition 2925 to stream texture data to one or
more processors 2912 may be very useful. On the other hand,
if the application is computational intensive, then having a
large processor local memory partition 2926 may be useful as
a scratch pad memory. Accordingly, how local memory 2924
is split between cache memory partition 2925, processor
memory partition 2926, or other uses (not shown in FIG. 29)
is application specific and can be reconfigured dynamically.
In an embodiment, memory/cache controller 2918 imple-
ments a write-through cache replacement policy as it man-
ages cache memory partition 2925.

Open pages of the memory coupled to the CA, interface
2986 and/or CA | interface 2987 can be mapped to open pages
of local memory 2924. Data from the open pages of the
memory coupled to the CA,, interface 2986 and/or CA, inter-
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face 2987 can be copied to local memory 2924 during idle
periods of the memory coupled to the CA, interface 2986
and/or CA, interface 2987.

In an embodiment, when subsystem 2901 (and thus, sub-
system 2900) is disposed on a memory module (e.g., memory
modules 2520, 2525, 2526, 2600, 2601, and/or 2602) sub-
system 2900 is coupled to a memory interface configured to
interface to a memory controller. Subsystem 2900 includes
processor 2912, CA | interface 2987, and memory/cache con-
troller 2918. CA | interface 2987 is coupled to processor 2912
and configured to connect to a first type of dynamic memory
integrated circuit devices (e.g., DDR3). Memory/cache con-
troller 2918 is coupled to processor 2912 and configured to
connect to a second type of dynamic memory integrated
circuit devices (e.g., XDR). The type of dynamic memory
integrated circuit devices coupled to the CA; interface can
have a latency that is similar, within a specified range of
ratios, or approximately equal to the latency of the type of
dynamic memory integrated circuit devices used for local
memory 2924. Subsystem 2900 can use at least part of (or all
of—i.e., a proper subset) of local memory 2924 as cache
memory (i.e., cache memory partition 2925) for the dynamic
memory integrated circuit devices coupled to the CA, inter-
face.

The size of cache memory partition 2925 and/or processor
memory partition 2926 may be reallocated in response to
commands received from a memory controller via a memory
interface. In other words, commands sent to an aperture cor-
responding to subsystem 2900 may be used to control the size
of cache memory partition 2925 and/or processor memory
partition 2926, and/or the ratio of the sizes of cache memory
partition 2925 to the size of processor memory partition 2926.
The size of cache memory partition 2925 and/or processor
memory partition 2926 may be reallocated in response to
processor 2912. For example, processor 2912 may determine
that more or less cache is needed and instruct memory/cache
controller 2918 to set or alter the size of cache memory
partition 2925 and/or processor memory partition 2926.

In an embodiment, a memory module having subsystem
2901 (e.g., memory modules 2520, 2525, 2526, 2600, 2601,
and/or 2602) can have a memory interface to connect to a
memory channel. This memory module can have first
dynamic memory integrated circuits coupled to CA; which
have a first access latency and a first access information rate.
Since subsystem 2901 is also included on this memory mod-
ule, local memory 2924 can be present on the memory mod-
ule. Local memory 2924 can have a second access latency
which can be approximately equal to the first access latency.
The first access information rate can be substantially less than
the access information rate of local memory 2924. Subsystem
2900 includes memory/cache controller 2918. Memory/
cache controller 2918 can copy data from an open page(s) of
the first dynamic memory integrated circuits to open page(s)
of'local memory 2924 during idle periods of the first dynamic
memory integrated circuits.

In an embodiment, subsystem 2900 caches data from at
least one open page of the memory coupled to the CA | inter-
face into at least one open page of local memory 2924 (and in
cache memory partition 2925, in particular). Subsystem 2900
does this caching during an idle period of the memory
coupled to the CA, interface. Subsystem 2900 can receive a
request for data stored in the memory coupled to the CA,
interface from processor 2912. Memory/cache controller
2918 (or logic 2916) can determine that this request can be
satisfied using cached data stored in local memory 2924.
Memory/cache controller 2918 can satisfy this request with
data stored in local memory 2924 (and in cache memory
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partition 2925, in particular). In an embodiment, the access
latency of the memory coupled to the CA, interface is
approximately equal to the access latency of local memory
2924. In an embodiment, the access information rate to
retrieve data from the memory coupled to the CA, interface is
substantially less than the access information rate to retrieve
data from local memory 2624. The size of cache memory
partition 2925 and/or processor memory partition 2926 can
be changed in response to processor 2912 and/or commands
received from a memory controller. Open pages of the
memory coupled to the CA, interface can be mapped to open
pages of local memory 2924.

FIG. 30 is an illustration of a hybrid flash/DRAM memory
module. In FIG. 30, computer system 3000 comprises CPU/
memory controller subsystem 3010, I/O controller 3030, and
memory modules 3020. CPU/memory controller subsystem
3010 includes CPU 3012 coupled to memory controller 3014.
One or more memory modules 3020 are coupled to memory
controller 3014 in subsystem 3010. Each memory module
3020 includes integrated circuit device 3021, CPU memory
3023, and nonvolatile memory 3028. Integrated circuit device
3021 includes a nonvolatile memory controller 3025 and
processor 3022. CPU memory 3023 typically contains
instructions and/or data used by the CPU 3012. Nonvolatile
memory 3028 typically contains instructions and/or data used
by CPU 3012 and/or processor 3022. CPU memory 3023 can
be dynamic memory integrated circuits. Integrated circuit
device 3021 can include other functionality. Accordingly, it
should be understood that integrated circuit device 3021 may
correspond to IC 2610 in memory modules 2600, 2601, and/
or 2602 and that module 3020 may be an embodiment of
memory modules 2600, 2601, and/or 2602.

The module 3020 illustrated in FIG. 30 includes a multiple
time programmable nonvolatile memory 3028. Flash
memory controller 3025 manages/controls nonvolatile
memory 3028. Thus, module 3020 can have a combination of
DRAM and nonvolatile RAM. Nonvolatile memory 3028
may be configure/controlled as a solid-state disk (SSD). Flash
memory controller 3025 may include (or be) an SSD control-
ler (with or without an additional processor). The SSD on
module 3020 may be accessed by CPU 3012 via the memory
channel which typically has higher bandwidth than an /O
bus.

Typically, nonvolatile memory 3028 (ak.a., flash or flash
memory) is seen as less reliable than DRAM. Thus, it is
expected that one or more flash chips may fail while the
DRAM chips (i.e., CPU memory 3023) on module 3020 are
all still functional. Accordingly, nonvolatile memory 3028
may be placed in one or more sockets, or be accessed via a
connector. This allows nonvolatile memory 3028 to be
replaced easily when a failure occurs. Thus, module 3020
does not need to be scrapped when a failure occurs in non-
volatile memory 3028. Since DRAM is relatively expensive
compared to flash, replacing the flash upon a flash failure may
make economic sense.

When nonvolatile memory 3028 is configured as an SSD,
the SSD on module 3020 may be accessed directly by a
processor 3022. Integrated circuit device 3021 may include a
serial-ATA (SATA), serial attached SCSI (SAS), eSATA,
PATA, IEEE 1394, USB (all revisions), SCSI Ultra, Fiber-
Channel, Infiniband, Thunderbolt, or other industry standard
1/0 interfaces (such as PCI-Express—PCle) to interface to
the external nonvolatile memory 3028 via an external flash
controller (not shown in FIG. 30). Integrated circuit device
3021 may include a network processor unit (NPU) such as a
TCP offload engine (TOE), a protocol translator (e.g., TCP
over SATA, TCP over PCI-Express, accelerated SCSI inter-

10

15

20

25

30

35

40

45

50

55

60

65

50

connect, etc.), and/or a protocol packet translator. These
arrangements may save pincount on integrated circuit device
3021. Advances in packaging technology may allow inte-
grated circuit device 3021 to incorporate the external control-
ler and to interface with nonvolatile memory 3028 with a
native nonvolatile memory interface. Processor 3022 and/or
integrated circuit device 3021 and an SSD on integrated cir-
cuit device 3021 may communicate via an SATA interface.
Processor 3022 and/or integrated circuit device 3021 and an
SSD on integrated circuit device 3021 may communicate via
aSAS, eSATA, PATA, TEEE 1394, USB (all revisions), SCSI
Ultra, FiberChannel, Infiniband, Thunderbolt, or other indus-
try standard 1/O interface (such as PCI-Express—PCle).
Module 3020 may include a SATA connector for communi-
cating with an SSD/HDD external to the module 3020. Mod-
ule 3020 may include a SAS, eSATA, PATA, IEEE 1394, USB
(all revisions), SCSI Ultra, FiberChannel, Infiniband, Thun-
derbolt, PCle or other industry standard /O connector for
communicating with an SSD/HDD external to the module
3020.

It should be understood that integrated circuit device 3021
may include additional processing functions and/or special-
ized processors. For example, integrated circuit device 3021
may include fixed function graphics processing units, encryp-
tion/decryption accelerators/offload engines (e.g., for imple-
menting/accelerating SSL, AEC, DEC, etc.), and media for-
mat encoders/decoders (e.g., JPEG, DVX, AVI, MP2, MP3,
MP4, Blu-ray, HD-DVD, DVD, etc.). It should also be under-
stood that module 3020 may be coupled to enterprise storage
type systems such as those with a longer storage latency than
a local SSD/HDD. For example, module 3020 may be
coupled to external disks, external disk arrays, RAID arrays,
tape drives, optical drives, and the like.

FIG. 31 is a block diagram illustrating a hybrid flash/
DRAM memory module compute subsystem. In FIG. 31,
subsystem 3101 comprises subsystem 3100, local memory
3124, and nonvolatile memory 3128. Subsystem 3100 com-
prises processor 3112, logic 3116, memory controller 3117,
CA input interface 3196, multiplexor (MUX) logic 3119,
CA,, interface 3186, CA, interface 3187, HS serial DQ inter-
face(s) 3178, and nonvolatile memory controller 3127. Sub-
system 3100 also includes memory/cache controller(s) 3118.
Memory/cache controller 3118 is operatively coupled to local
memory 3124. Local memory 3124 may include a cache
memory partition and a processor memory partition. [ocal
memory 3124 may be operatively coupled to subsystem 3100
by one or more memory channels. It should be understood
that subsystem 3101 may be included on a memory module
3020. Thus, it can be seen that subsystem 3100 may be used
as IC 2610 in memory modules 2600, 2601, and/or 2602 and
that subsystem 3101 may be disposed on memory modules
3020, 2600, 2601, and/or 2602.

In an embodiment, a memory module having subsystem
3101 (e.g., memory modules 3020, 2520, 2525, 2526, 2600,
2601, and/or 2602) can have a memory interface configured
to connect with a memory controller. Subsystem 3100 may be
an integrated circuit device that is coupled to the memory
interface. Subsystem 3100 includes processor 3112, CA,
interface 3187, nonvolatile memory controller 3127, and an
interface to nonvolatile memory 3128. CA, interface 3187 is
configured to connect to a first type of dynamic memory
integrated circuit devices. Nonvolatile memory controller
3127 is coupled to processor 3112. The interface to nonvola-
tile memory 3128 is configured to couple nonvolatile memory
controller 3127 to at least one nonvolatile memory integrated
circuit device. A plurality of the first type of dynamic memory
integrated circuit devices is coupled to CA interface 3187. At
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least one nonvolatile memory integrated circuit device is
coupled to subsystem 3100 via the interface to nonvolatile
memory 3128.

Subsystem 3101 may also include a local memory 3124.
This local memory 3124 may comprise at least one of a
second type of dynamic memory integrated circuit device.
Local memory 3124 may connect to subsystem 3100 via an
interface. This interface may couple local memory 3124 to
processor 3112 via memory/cache controller 3118. Local
memory 3124 may be used to cache data stored in the
dynamic memory integrated circuit devices coupled to CA,
interface 3187. Subsystem 3101 may include an SSD control-
ler coupled to processor 3112 and nonvolatile memory con-
troller 3127. Subsystem 3101 may include a SATA controller
coupled to processor 3112 and nonvolatile memory controller
3127. Nonvolatile memory 3128 may store an operating sys-
tem that processor 3112 can boot up and execute. This oper-
ating system may be a different operating system than, for
example, CPU 3012 boots and runs. The memory module
may receive instructions via the memory interface that cause
processor 3112 to perform operations on data. Subsystem
3100 may return the results of these operation via the memory
interface.

In an embodiment, a memory module having subsystem
3101 (e.g., memory modules 3020, 2520, 2525, 2526, 2600,
2601, and/or 2602) can have a memory interface to connect to
a memory channel. This memory module may include a plu-
rality of dynamic memory integrated circuits. The memory
module may have a nonvolatile memory 3128 comprising at
least one nonvolatile memory integrated circuit device. The
memory module may include subsystem 3100. Subsystem
3100 includes processor 3112, CA, interface 3187, NV con-
troller 3127, and CA input interface 3196, and High-speed
(HS) serial DQ interface 3178. CA, interface 3187 is coupled
to the plurality of dynamic memory integrated circuits. NV
controller 3127 is coupled to nonvolatile memory 3128 via an
interface.

In an embodiment, subsystem 3100 receives a memory
command from a memory controller coupled to CA input
interface 3196. In response to this memory command, sub-
system 3100 stores data in the plurality of dynamic memory
integrated circuits coupled to CA, interface 3187 and/or a
plurality of dynamic memory integrated circuits coupled to
CA, interface 3186. In response to a command from proces-
sor 3112, subsystem 3100 stores data in nonvolatile memory
3128.

FIG. 32 is an illustration of a hybrid disk type nonvolatile
storage and DRAM memory module. In FIG. 32, computer
system 3200 comprises CPU/memory controller subsystem
3210, I/O controller 3230, and memory modules 3220. CPU/
memory controller subsystem 3210 includes CPU 3212
coupled to memory controller 3214. One or more memory
modules 3220 are coupled to memory controller 3214 in
subsystem 3210. Each memory module 3220 includes inte-
grated circuit device 3221, CPU memory 3223, and disk type
storage 3228. Integrated circuit device 3221 includes a disk
interface 3225 and processor 3222. CPU memory 3223 typi-
cally contains instructions and/or data used by the CPU 3212.
Disk type storage 3228 typically contains instructions and/or
dataused by CPU 3212 and/or processor 3222. CPU memory
3223 can be dynamic memory integrated circuits. Integrated
circuit device 3221 can include other functionality. Accord-
ingly, it should be understood that integrated circuit device
3221 may correspond to IC 2610 in memory modules 2600,
2601, and/or 2602 or subsystems 2800, 2900, and/or 3100
and that module 3220 may be an embodiment of memory
modules 3020, 2600, 2601, and/or 2602.
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The module 3220 illustrated in FIG. 30 includes disk type
storage 3228. Disk type storage may be, or include, but is not
limited to, a solid-state disk drive, flash memory controlled
and organized as a disk type mass storage device (e.g., a USB
memory stick), or a small form-factor magnetic disk drive
(e.g., a 1.8" or smaller hard disk drive).

Disk interface 3225 manages/controls disk type storage
3228. Thus, module 3220 can have a combination of DRAM
and disk type storage 3228. Disk interface 3225 may include
(or be) an SSD controller (with or without an additional
processor). Disk interface 3225 on module 3220 may be
accessed by CPU 3212 via the memory channel which typi-
cally has higher bandwidth than an 1/O bus.

Disk type storage 3228 may be accessed directly by a
processor 3022. In other words, disk type storage 3228 may
be accessed by a processor 3022 without passing the data/
address through memory controller 3214 or relying upon
CPU 3212. Disk interface 3225 may be or include an SATA
interface. Processor 3222 and/or integrated circuit device
3221 and disk type storage 3228 may communicate via an
SATA interface. Module 3220 may include a SATA connector
for communicating with an SSD/HDD external to the module
3220.

FIG. 33 is a block diagram illustrating a hybrid disk type
nonvolatile storage and DRAM memory module compute
subsystem. In FIG. 33, subsystem 3301 may comprise sub-
system 3300, optional local memory 3324, and disk type
storage 3328. Subsystem 3300 comprises logic 3316,
memory controller 3317, CA input interface 3396, multi-
plexor (MUX) logic 3319, CA, interface 3386, CA, interface
3387, HS serial DQ interface(s) 3378, and disk interface
3327. Subsystem 3300 may optionally include processor
3312 and memory/cache controller(s) 3318. If included,
memory/cache controller 3318 is operatively coupled to local
memory 3324 (if included). Local memory 3324 may be
operatively coupled to subsystem 3300 by one or more
memory channels. Local memory 3324 may be accessed by
one or more memory channels. It should be understood that
subsystem 3301 may be included on a memory module 3220.
Thus, it can be seen that subsystem 3300 may be used as IC
2610 in memory modules 2600, 2601, and/or 2602 and that
subsystem 3301 may be disposed on memory modules 3020,
3220, 2600, 2601, and/or 2602.

In an embodiment, a memory module having subsystem
3301 (e.g., memory modules 3020, 3220, 2520, 2525, 2526,
2600, 2601, and/or 2602) can have a memory interface con-
figured to connect with a memory controller. Subsystem 3300
may be an integrated circuit device that is coupled to the
memory interface. Subsystem 3300 includes CA, interface
3387 and disk interface 3327. CA| interface 3387 is config-
ured to connect to a first type of dynamic memory integrated
circuit devices. Disk interface 3327 may be coupled to pro-
cessor 3312 (if present). A plurality of the first type of
dynamic memory integrated circuit devices are coupled to
CA, interface 3387. At least one disk type storage device
3328 coupled to subsystem 3100 via the disk interface 3327.

Subsystem 3301 may also include a local memory 3324.
This local memory 3324 may comprise at least one of a
second type of dynamic memory integrated circuit device.
Local memory 3324 may connect to subsystem 3300 via an
interface. This interface may couple local memory 3324 (if
present) to processor 3112 (if present) via memory/cache
controller 3318 (if present). Local memory 3324 may be used
to cache data stored in the dynamic memory integrated circuit
devices coupled to CA, interface 3387. Disk type storage
3328 may store an operating system that processor 3312 (if
present) can boot up and execute. The memory module may
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receive instructions via the memory interface that cause pro-
cessor 3312 (if present) to perform operations on data. Sub-
system 3300 may return the results of these operations via the
memory interface.

In an embodiment, a memory module having subsystem
3301 (e.g., memory modules 3020, 3220, 2520, 2525, 2526,
2600, 2601, and/or 2602) can have a memory interface to
connect to a memory channel. This memory module may
include a plurality of dynamic memory integrated circuits.
The memory module may have disk type storage 3328. The
memory module may include subsystem 3300. Subsystem
3300 includes CA,; interface 3387, disk interface 3327, and
CA input interface 3396, and High-speed (HS) serial DQ
interface 3378. CA, interface 3387 is coupled to the plurality
of dynamic memory integrated circuits. Disk interface 3327
is coupled to disk type storage 3328 via an interface.

In an embodiment, subsystem 3300 receives a memory
command from a memory controller coupled to CA input
interface 3396. In response to this memory command, sub-
system 3300 stores data in the plurality of dynamic memory
integrated circuits coupled to CA, interface 3387 and/or a
plurality of dynamic memory integrated circuits coupled to
CA,, interface 3386. In response to a command by processor
3312, subsystem 3300 can store data in disk type storage
3328.

FIG. 34 is an illustration of a hybrid flash/DRAM memory
module. In FIG. 34, computer system 3400 comprises CPU/
memory controller subsystem 3410, I/O controller 3430, and
memory modules 3420. CPU/memory controller subsystem
3410 includes CPU 3412 coupled to memory controller 3414.
One or more memory modules 3420 are coupled to memory
controller 3414 in subsystem 3410. Each memory module
3420 includes integrated circuit device 3021 and CPU
memory 3423. Integrated circuit device 3421 includes non-
volatile memory 3428 and processor 3422. CPU memory
3423 typically contains instructions and/or data used by the
CPU 3412. CPU memory 3423 can be dynamic memory
integrated circuits. Integrated circuit device 3421 can include
other functionality. Accordingly, it should be understood that
integrated circuit device 3421 may correspond to IC 2610 in
memory modules 2600, 2601, and/or 2602 or subsystems
2800, 2900, 3100 and/or 3300 and that module 3420 may be
an embodiment of memory modules 3020, 3220, 2600, 2601,
and/or 2602.

Since nonvolatile memory 3428 is included in integrated
circuit device 3421, nonvolatile memory 3428 may be
accessed directly by a processor 3022. Integrated circuit
device 3421 may include an SATA interface. Processor 3422
and/or integrated circuit device 3421 and an SSD on inte-
grated circuit device 3421 may communicate via an SATA
interface. Module 3420 may include a SATA connector for
communicating with an SSD/HDD external to the module
3420.

FIG. 35 is a block diagram illustrating a hybrid flash/
DRAM memory module compute subsystem. In FIG. 35,
subsystem 3501 comprises subsystem 3500 and local
memory 3524. Subsystem 3500 comprises processor 3512,
logic 3516, memory controller 3517, CA input interface
3596, multiplexor (MUX) logic 3519, CA,, interface 3586,
CA, interface 3587, high-speed (HS) serial DQ interface(s)
3578, and nonvolatile memory 3528. Subsystem 3500 also
includes memory/cache controller(s) 3518. Memory/cache
controller 3518 is operatively coupled to local memory 3524.
Local memory 3524 may be operatively coupled to sub-
system 3500 by one or more memory channels. It should be
understood that subsystem 3501 may be included on a
memory module 3420. Thus, it can be seen that subsystem
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3500 may beused as IC 2610 in memory modules 2600,2601,
and/or 2602 and that subsystem 3501 may be disposed on
memory modules 3020, 3220, 3240,2600, 2601, and/or 2602.

In an embodiment, a memory module having subsystem
3501 (e.g., memory modules 3020, 3220, 3420, 2520, 2525,
2526,2600,2601, and/or 2602) can have a memory interface
configured to connect with a memory controller. Subsystem
3500 may be an integrated circuit device that is coupled to the
memory interface. Subsystem 3500 includes a processor
3512, CA, interface 3587, and nonvolatile memory 3528.
CA, interface 3587 is configured to connect to a first type of
dynamic memory integrated circuit devices. Nonvolatile
memory 3528 is coupled to processor 3512. A plurality of the
first type of dynamic memory integrated circuit devices is
coupled to CA, interface 3587.

Subsystem 3501 may also include a local memory 3524.
This local memory 3524 may comprise at least one of a
second type of dynamic memory integrated circuit device.
Local memory 3524 may connect to subsystem 3500 via an
interface. This interface may couple local memory 3524 to
processor 3512 via memory/cache controller 3518. Local
memory 3524 may be used to cache data stored in the
dynamic memory integrated circuit devices coupled to CA,
interface 3587. Nonvolatile memory 3528 may store an oper-
ating system that processor 3512 can boot up and execute.
The memory module may receive instructions via the
memory interface that cause processor 3512 to perform
operations on data. Subsystem 3500 may return the results of
these operations via the memory interface.

In an embodiment, a memory module having subsystem
3501 (e.g., memory modules 3020, 3220, 3420, 2520, 2525,
2526,2600,2601, and/or 2602) can have a memory interface
to connect to a memory channel. This memory module may
include a plurality of dynamic memory integrated circuits.
The memory module may include subsystem 3500. Sub-
system 3500 includes processor 3512, CA, interface 3187,
NV controller 3527, CA input interface 3596, High-speed
(HS) serial DQ interface 3578, and nonvolatile memory 3528.
CA, interface 3587 is coupled to the plurality of dynamic
memory integrated circuits.

In an embodiment, subsystem 3500 receives a memory
command from a memory controller coupled to CA input
interface 3596. In response to this memory command, sub-
system 3500 stores data in the plurality of dynamic memory
integrated circuits coupled to CA, interface 3587 and/or a
plurality of dynamic memory integrated circuits coupled to
CA,, interface 3586. In response to a command from proces-
sor 3512, subsystem 3500 stores data in nonvolatile memory
3528.

Memory modules 3020, 3220, 3420, 2520, 2525, 2526,
2600, 2601, and/or 2602 can each include an integrated cir-
cuit device that can have one or more processing cores.
Memory modules 3020, 3220, and 3420 include some form of
nonvolatile memory. This nonvolatile memory may be placed
on one side of modules 3020, 3220, and 3420. This nonvola-
tile memory may function as an SSD. The nonvolatile func-
tioning as an SSD may hold an operating system that is booted
and executed by one or more processing cores. Thus, it should
be understood that modules 3020, 3220, and 3420 can be
viewed as self-contained computer systems.

Systems with modules 3020, 3220, or 3420 (e.g., system
3000, system 3200, and system 3400) have architectural
properties that help the performance of applications running,
for example, MapReduce, Hadoop, Databases, and
In-Memory Databases (IMDB). These architectural proper-
ties include, for example, the use of sequential and parallel
computing cores in the IC 3021, IC 3221, and/or 3421. IC



US 9,275,733 B2

55

3021, IC 3221, and/or 3421 can contain both traditional CPU
type cores and GPU type cores. This allows modules 3020,
3220, or 3420 to store MapReduce data and process it in an
effective and efficient manner. Research indicates that paral-
lel compute cores can be useful for MapReduce tasks, and the
integration of both traditional CPU type cores and GPU type
cores on the modules 3020, 3220, or 3420 can provide pro-
grammers/systems with CPU type compute resources and
GPU type compute resources as needed.

Another architectural property is the use of nonvolatile
memory as an SSD. This can increase IOPS (I/Os Per Second)
and provide a mechanism for fast checkpointing, logging,
restart, and recovery. MapReduce, Hadoop and databases are
typically designed to manipulate large amounts of data. The
incorporation of an SSD improves /O performance. Splitting
the memory in system 3000, system 3200, and/or system
3400 and dedicating a relatively large amount of main
memory/storage to each compute engine (i.e., each of IC
3021, IC 3221, and/or 3421—which each can have multiple
cores) can change the ratio of compute and storage capacity
and/or bandwidth in a way that can be more favorable to
MapReduce, Hadoop, and/or databases. Having multiple
compute engines (one on each of modules 3020, 3220, or
3420) can also change the ratio of compute and storage capac-
ity and/or bandwidth in a way that can be more favorable to
MapReduce/Hadoop and databases. Another architectural
property is the use of high capacity and high bandwidth
memory and SSD storage on the modules 3020, 3220, or
3420. This can improve query performance and query cach-
ing for database applications.

FIG. 36A is a block diagram of a multi-core computer
system. In FIG. 36 A, system 3600 comprises multi-core CPU
3610, memory modules 3651, memory modules 3652, and
memory modules 3653. Multi-core CPU 3610 includes P
number of processor cores 3611-3614 and memory controller
3620. Memory controller 3620 has M number of memory
channels. One or more memory modules 3651 are coupled to
memory controller 3620 via a first memory channel. One or
more memory modules 3652 are coupled to memory control-
ler 3620 via a second memory channel. One or more memory
modules 3653 are coupled to memory controller 3620 via an
M? memory channel.

Each memory module 3651 includes a processor 3661 and
memory 3671. Memory 3671 typically contains instructions
and/or data used by the CPU 3610 and/or processor 3661.
Each memory module 3652 includes a processor 3662 and
memory 3672. Memory 3672 typically contains instructions
and/or data used by the CPU 3610 and/or processor 3662.
Each memory module 3653 includes a processor 3663 and
memory 3673. Memory 3673 typically contains instructions
and/or data used by the CPU 3610 and/or processor 3663.

In FIG. 36 A, processor core #1 3611 is shown operatively
coupled to memory modules 3651 via memory controller
3620 and memory channel #1. Processor core #2 3612 is
shown operatively coupled to memory modules 3652 via
memory controller 3620 and memory channel #2. Processor
core #M 3613 is shown operatively coupled to memory mod-
ules 3653 via memory controller 3620 and memory channel
#M. Processor core #P 3614 is shown operatively coupled to
memory controller 3620. Processor cores 3611-3614 can
have different functions (e.g., DSP, GPU, CPU, etc.) and/or
execute different processes and/or applications at the same
time. In an embodiment, each processor core 3611-3614 can
connect with any memory channel #1-#M.

System 3600 determines how many cores are in CPU 3610.
In other words, via a system call or other method, CPU 3610
determines that there are P number of processor cores in CPU
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3610. System 3600 also determines how many memory chan-
nels memory controller 3620 is using to communicated with
memory modules 3651-3653. In other words, via a system
call or other method, system 3600 determines that there are M
number of memory channels being used to communicate with
memory modules 3651-3653. The number M may remain
relatively static. However, M may change between system
startups as more memory channels are populated and/or
depopulated with memory modules 3651-3653.

System 3600 selects a group of M number of processor
cores 3611-3613. These cores will be each used to commu-
nicate with one set of memory modules 3651-3653 via a
single memory channel (i.e., each selected processor core
3611-3613 will communicate via one of M memory chan-
nels). Thus, the number of cores selected is, in an embodi-
ment, equal to the number of memory channels having
memory modules 3651-3653 that have processors 3661-
3663, respectively.

Each of the selected group of processor cores (i.e., proces-
sor core #1 3611 through processor core #M 3613) is assigned
to communicate with at least one processor 3661-3663 on the
memory modules 3651-3653 coupled to each of the M num-
ber of memory channels. In other words, processor core #1
3611 is assigned to communicate with the at least one pro-
cessor 3661 on memory modules 3651 via memory channel
#1. Processor core #2 3612 is assigned to communicate with
the at least one processor 3662 on memory modules 3652 via
memory channel #2, and so on, for all of the M number of
processor cores 3611-3613 in the selected group (and M
number of memory channels with memory modules 3651-
3653 having processors 3661-3663).

There can be M+X number of memory channels supported
by memory controller 3620, where X is a number of memory
channels that do not have any memory modules 3651-3653
having processors 3661-3663. However, since they do not
have any processors 3661-3663 on at any of these memory
modules, a processor core 3611-3614 is not assigned to those
memory channels (not shown in FIG. 36A). In addition, the
above discussion assumes that P is greater than or equal to M.
I M>P, then M-P processor cores 3611-3614 can be assigned
to communicate with the at least one processor 3661-3663 on
memory modules 3651-3653 via a plurality of memory chan-
nels. However, in an embodiment, the M-P processor cores
3611-3614 that are assigned to communicate via more than
one memory channel are assigned to each communicate via
the same number of memory channels. In other words, in this
embodiment, the load of communicating with the at least one
processor 3661-3663 on memory modules 3651-3653 via a
plurality of memory channels may be distributed equally to
the M-P processor cores 3611-3614 that are assigned to
communicate via more than one memory channel.

Each ofthe selected group of M processor cores 3611-3613
can communicate with the at least one processor 3661-3663
by writing to an address aperture associated with the at least
one processor 3661-3663. Memory modules 3651-3653 can
include a memory interface configured to interface with
memory controller 3620 via one of the M memory channels.
Memory modules 3651-3653 can include an integrated cir-
cuit device coupled to this memory interface. This integrated
circuit device can include a first processor that is one of the at
least one processors 3661-3663. The integrated circuit device
can include an interface that is coupled to the first processor
and configured to connect to a first type of dynamic memory
integrated circuit devices. Memory modules 3651-3653 can
include a rank of first type of dynamic memory integrated
circuit devices coupled to the first interface of the integrated
circuit device. The integrated circuit device may have a sec-
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ond interface coupled to the first processor and is configured
to connect to a second type of dynamic integrated circuit
devices. Memory modules 3651-3653 may further include at
least one of the second type of dynamic memory integrated
circuit devices coupled to the second interface (e.g., local
memory, described previously).

Processor cores 3611-3614 can communicate with the at
least one processor 3661-3663 by reading from, and writing
to, an address aperture associated with the at least one pro-
cessor 3661-3663. CPU 3610 (and/or processor cores 3611-
3614) can be configured to use any cache policy supported by
processor CPU 3610 to read from, and write to, this address
aperture (or portions thereof). However, it should be under-
stood that, in an embodiment, the most useful cache policies
may be limited to configuring the address aperture (or por-
tions thereof) to be treated by CPU 3610 as uncacheable
memory (UC), write combining memory (WC), or write back
(WB). In an embodiment, these cache policies may be com-
bined with the use of certain instructions (e.g., fence instruc-
tions, streaming load instructions, and/or streaming write
instructions) to achieve an optimal (e.g., highest) communi-
cation bandwidth between processor cores 3611-3614 (and/
or CPU 3610) and at least one processor 3661-3663.

In an embodiment, when the address aperture (or portions
thereof) are configured to be treated as WC or WB, a mini-
mum burst size may be used to achieve an optimal (e.g.,
highest) communication bandwidth between processor cores
3611-3614 (and/or CPU 3610) and at least one processor
3661-3663. In other words, small burst sizes (e.g., less than a
certain, implementation dependent, number of column
addresses per burst) may result in less than optimal commu-
nication bandwidth between processor cores 3611-3614 (and/
or CPU 3610) and at least one processor 3661-3663. Larger
sizes (e.g., greater than a certain, implementation dependent,
number of column addresses per burst) may approach (or
approximate) an optimal (e.g., highest) communication band-
width between processor cores 3611-3614 (and/or CPU
3610) and at least one processor 3661-3663. Assigning addi-
tional processor cores 3611-3614 to communicate with the at
least one processor 3661-3663 (e.g., when P>M) on a single
memory channel may also increase the communication band-
width between CPU 3610 and the at least one processor
3661-3663.

FIG. 36B is a block diagram of a multi-socket multi-core
computer system. In FIG. 36B, system 3601 comprises multi-
core CPU 3610, multi-core CPU 3630, memory modules
3651, memory modules 3652, memory modules 3655, and
memory modules 3656. Multi-core CPU 3610 includes P
number of processor cores 3611-3614 and memory controller
3620 (processor core 3612 is not shown in FIG. 36B).
Memory controller 3620 has M number of memory channels.
One or more memory modules 3651 are coupled to memory
controller 3620 via a first memory channel. One or more
memory modules 3652 are coupled to memory controller
3620 via an M” memory channel. Multi-core CPU 3630
includes R number of processor cores 3631-3634 and
memory controller 3621 (processor core 3632 is not shown in
FIG. 36B). Memory controller 3621 has Q number of
memory channels. One or more memory modules 3655 are
coupled to memory controller 3621 via a first memory chan-
nel. One or more memory modules 3656 are coupled to
memory controller 3621 via a Q” memory channel. Multi-
core CPU 3610 is operatively coupled to multi-core CPU
3630.

Each memory module 3651 includes a processor 3661 and
memory 3671. Memory 3671 typically contains instructions
and/or data used by CPU 3610, processor 3661, and/or CPU
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3630. Each memory module 3652 includes a processor 3662
and memory 3672. Memory 3672 typically contains instruc-
tions and/or data used by the CPU 3610, processor 3662,
and/or CPU 3630. Each memory module 3655 includes a
processor 3665 and memory 3675. Memory 3675 typically
contains instructions and/or data used by the CPU 3630,
processor 3665, and/or CPU 3610. Each memory module
3656 includes a processor 3666 and memory 3676. Memory
3676 typically contains instructions and/or data used by the
CPU 3630, processor 3666, and/or CPU 3610.

In FIG. 36B, processor core #1 3611 is shown operatively
coupled to memory modules 3651 via memory controller
3620 and memory channel #1. Processor core #M 3613 is
shown operatively coupled to memory modules 3652 via
memory controller 3620 and memory channel #M. Processor
core #P 3614 is shown operatively coupled to memory con-
troller 3620. In an embodiment, each processor core 3611-
3614 can connect with any memory channel #1-#M and/or
#1-#Q.

Processor core #1 3631 is shown operatively coupled to
memory modules 3655 via memory controller 3621 and
memory channel #1. Processor core #Q 3633 is shown opera-
tively coupled to memory modules 3656 via memory control-
ler 3621 and memory channel #Q. Processor core #R 3634 is
shown operatively coupled to memory controller 3621. In an
embodiment, each processor core 3611-3614 can connect
with any memory channel #1-#M and/or #1-#Q. Processor
cores 3611-3614 and/or processor cores 3631-3634 can have
different functions (e.g., DSP, GPU, CPU, etc.) and/or
execute different processes and/or applications at the same
time.

System 3601 determines how many cores are in CPU 3610
and CPU 3630. In other words, via a system call or other
method, CPU 3610 or CPU 3630 determines that there are P
number of processor cores in CPU 3610 and R number of
processor cores in CPU 3630. System 3601 determines how
many memory channels memory controller 3620 is using to
communicate with memory modules 3651-3652. System
3601 determines how many memory channels memory con-
troller 3621 is using to communicate with memory modules
3655-3656. In other words, via a system call or other method,
system 3601 determines that there are M number of memory
channels being used to communicate with memory modules
3651-3652 and Q number of memory channels being used to
communicate with memory modules 3655-3656. The num-
bers M and Q may remain relatively static. However, M
and/or Q may change between system startups as more
memory channels are populated and/or depopulated with
memory modules 3651-3652 and 3655-3656.

System 3601 selects a group of M number of processor
cores 3611-3613 from CPU 3610. These cores in CPU 3610
will be each used to communicate with one set of memory
modules 3651-3652 via a single memory channel (i.e., each
selected processor core 3611-3613 will communicate via one
of M memory channels). Thus, the number of cores selected
in CPU 3610 is, in an embodiment, equal to the number of
memory channels having memory modules 3651-3652 that
have processors 3661-3662, respectively. System 3601
selects a group of Q number of processor cores 3631-3633
from CPU 3630. These cores in CPU 3630 will be each used
to communicate with one set of memory modules 3655-3656
via a single memory channel (i.e., each selected processor
core 3631-3633 will communicate via one of Q memory
channels). Thus, the number of cores selected in CPU 3630 is,
in an embodiment, equal to the number of memory channels
having memory modules 3655-3656 that have processors
3665-3666, respectively.
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Each of the selected group of processor cores in CPU 3610
(i.e., processor core #1 3611 through processor core #M
3613) is assigned to communicate with at least one processor
3661-3662 on the memory modules 3651-3652 coupled to
each of the M number of memory channels coupled to CPU
3610. In other words, processor core #1 3611 is assigned to
communicate with the atleast one processor 3661 on memory
modules 3651 viamemory channel #1, and so on, forall ofthe
M number of processor cores 3611-3613 in the selected group
(and M number of memory channels with memory modules
3651-3652 having processors 3661-3662). Each of the
selected group of processor cores in CPU 3630 (i.e., proces-
sor core #1 3631 through processor core #Q 3633) is assigned
to communicate with at least one processor 3665-3666 on the
memory modules 3655-3656 coupled to each of the Q num-
ber of memory channels coupled to CPU 3630. In other
words, processor core #1 3631 is assigned to communicate
with the at least one processor 3665 on memory modules
3655 via memory channel #1, and so on, for all of the Q
number of processor cores 3631-3633 in the selected group
(and Q number of memory channels with memory modules
3655-3656 having processors 3665-3666). Thus, it should be
understood that each of the cores 3611-3613 in multi-core
CPU 3610 is assigned to communicate via a memory channel
that resides on CPU 3610. Likewise, each of the cores 3631-
3633 in multi-core CPU 3630 is assigned to communicate via
a memory channel that resides on CPU 3630.

There can be M+X number of memory channels supported
by memory controller 3620, where X is a number of memory
channels that do not have any memory modules 3651-3653
having processors 3661-3663. However, since they do not
have any processors 3661-3663 on at any of these memory
modules, a processor core 3611-3614 is not assigned to those
memory channels (not shown in FIG. 36B). There can be
M+Y number of memory channels supported by memory
controller 3621, where Y is a number of memory channels
that do not have any memory modules 3655-3656 having
processors 3665-3666. However, since they do not have any
processors 3665-3666 on at any of these memory modules, a
processor core 3631-3634 is not assigned to those memory
channels (not shown in FIG. 36B). In addition, the above
discussion assumes that P is greater than or equal to M and R
is greater than or equal to Q. If M>P or Q>R, then M-P
processor cores 3611-3614 and/or Q-R processor cores
3631-3634 can be assigned to communicate via a plurality of
memory channels. However, in an embodiment, the M-P
processor cores 3611-3614 and/or Q-R processor cores
3631-3634 that are assigned to communicate via more than
one memory channel are assigned to each communicate via
the same number of memory channels. In other words, in this
embodiment, the load of communicating with the at least one
processor 3661-3662 and/or 3665-3666 on memory modules
3651-3653 and 3655-3656, respectively, via a plurality of
memory channels is distributed equally to the M—P processor
cores 3611-3614 and the Q-R processor cores 3631-3634,
respectively, that are assigned to communicate via more than
one memory channel.

Each ofthe selected group of M processor cores 3611-3613
on CPU 3610 can communicate with the at least one proces-
sor 3661-3662 by writing to an address aperture associated
with the at least one processor 3661-3662. Memory modules
3651-3652 can include a memory interface configured to
interface with memory controller 3620 via one of the M
memory channels. Memory modules 3651-3652 can include
an integrated circuit device coupled to this memory interface.
This integrated circuit device can include a first processor that
is one ofthe atleast one processors 3661-3662. The integrated
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circuit device can include an interface that is coupled to the
first processor and configured to connect to a first type of
dynamic memory integrated circuit devices. Memory mod-
ules 3651-3652 can include a rank of first type of dynamic
memory integrated circuit devices coupled to the first inter-
face of the integrated circuit device. The integrated circuit
device may have a second interface coupled to the first pro-
cessor and is configured to connect to a second type of
dynamic integrated circuit devices. Memory modules 3651-
3652 may further include at least one of the second type of
dynamic memory integrated circuit devices coupled to the
second interface (e.g., local memory, described previously).

Each of the selected group of Q processor cores 3631-3633
on CPU 3630 can communicate with the at least one proces-
sor 3665-3666 by writing to an address aperture associated
with the at least one processor 3665-3666. Memory modules
3655-3656 can include a memory interface configured to
interface with memory controller 3621 via one of the Q
memory channels. Memory modules 3655-3656 can include
an integrated circuit device coupled to this memory interface.
This integrated circuit device can include a first processor that
is one ofthe atleast one processors 3665-3666. The integrated
circuit device can include an interface that is coupled to the
first processor and configured to connect to a first type of
dynamic memory integrated circuit devices. Memory mod-
ules 3655-3656 can include a rank of first type of dynamic
memory integrated circuit devices coupled to the first inter-
face of the integrated circuit device. The integrated circuit
device may have a second interface coupled to the first pro-
cessor and is configured to connect to a second type of
dynamic integrated circuit devices. Memory modules 3655-
3656 may further include at least one of the second type of
dynamic memory integrated circuit devices coupled to the
second interface (e.g., local memory, described previously).

Processor cores 3611-3614 and processor cores 3631-3634
can communicate with the at least one processor 3661-3662
and processors 3665-2666 by reading from, and writing to,
address apertures associated with the at least one processor
3661-3662 and the at least one processor 3665-3666. CPU
3610 and/or CPU 3630 can be configured to use any cache
policy supported by processor CPU 3610 and/or CPU 3630,
respectively, to read from, and write to, these address aper-
tures (or portions thereof). However, it should be understood
that, in an embodiment, the mostuseful cache policies may be
limited to configuring the address aperture (or portions
thereof) to be treated by CPU 3610 and/or CPU 3630 as
uncacheable memory (UC), write combining memory (WC),
or write back (WB). In an embodiment, these cache policies
may be combined with the use of certain instructions (e.g.,
fence instructions, streaming load instructions, and/or
streaming write instructions) to achieve an optimal (e.g.,
highest) communication bandwidth between CPU 3610 and/
or CPU 3630 and the at least one processor 3661-3662 and the
at least one processor 3665-3666. In addition, when the
address aperture (or portions thereof) are configured to be
treated as WC or WB, a minimum burst size may be used to
achieve an optimal (e.g., highest) communication bandwidth
between CPU 3610 and/or CPU 3630 and the at least one
processor 3661-3662 and the at least one processor 3665-
3666. In other words, small burst sizes (e.g., less than a
certain, implementation dependent, number of column
addresses per burst) may result in less than optimal commu-
nication bandwidth between CPU 3610 and/or CPU 3630 and
the at least one processor 3661-3662 and the at least one
processor 3665-3666. Larger sizes (e.g., greater than a cer-
tain, implementation dependent, number of column
addresses per burst) may approach (or approximate) an opti-
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mal (e.g., highest) communication bandwidth between CPU
3610 and/or CPU 3630 and the at least one processor 3661-
3662 and the at least one processor 3665-3666. Assigning
additional processor cores 3611-3614 and/or 3631-3634 on
CPU 3610 and/or CPU 3630 to communicate with the at least
one processor 3661-3663 and/or 3665-3666 (e.g., when P>M
and/or R>QQ) on a single memory channel may also increase
the communication bandwidth between CPU 3610 and/or
CPU 3630 and the at least one processor 3661-3663 and/or
3665-3666.

FIG. 37 is a flowchart of a method of communicating with
a plurality of memory modules that include processors. The
steps illustrated in FIG. 37 may be performed by one or more
elements of system 3600. The steps illustrated in FIG. 37 may
be performed by one or more elements of system 100, system
700, system 1100, system 2500, system 2501, system 2502,
system 2503, system 3000, system 3200, and/or system 3400.

It is determined that there are P number of processor cores
in a CPU (3702). For example, an element of CPU 3610
executing software may determine that multi-core CPU 3610
includes P number of processor cores 3611-3614. It is deter-
mined that there are M number of memory channels used by
the CPU to communicate with a plurality of memory modules
(3704). For example, an element of CPU 3610 executing
software may determine that memory controller 3620 is
coupled to M number of memory channels that have at least
one memory module 3651-3653 which also has a processor
3661-3663 on it.

Each of the cores in the group are assigned to communi-
cate, via a respective one of the memory channels, with at
least one processor disposed on the at least one of the memory
modules coupled to each of the M number of memory chan-
nels (3708). For example, an element of CPU 3610 executing
software may assign each of processor cores 3611-3613 to
communicate with a corresponding at least one processor
3661-3663 via the memory channel coupled to the memory
module 3651-3653 holding that at least one processor 3661-
3663.

FIG. 38 is a flowchart of a method of communicating with
a plurality of memory modules that include processors. The
steps illustrated in FIG. 38 may be performed by one or more
elements of system 3600. The steps illustrated in FIG. 37 may
be performed by one or more elements of system 100, system
700, system 1100, system 2500, system 2501, system 2502,
system 2503, system 3000, system 3200, and/or system 3400.

It is determined that M number of memory channels con-
nect to at least one memory module having a processor dis-
posed on the at least one memory module (3802). For
example, system 3600 may determine that memory controller
3620 is coupled to M number of memory channels that each
have at least one processor disposed on at least one of the
memory modules on each of those M channels.

One processor core is assigned to each of the M memory
channels. The one processor core is assigned to communicate
with the processor disposed on the at least one memory mod-
ule (3804). For example, system 3600 may assign a single one
of each of processor cores 3611-1613 to each of memory
channels #1-#M, respectively, to communicate with proces-
sor cores 3661-3663, respectively.

FIG. 39 is a block diagram of a memory module broadcast
system. In FIG. 39, In FIG. 39, computer system 3900 com-
prises CPU/memory controller subsystem 3910, I/O control-
ler 3950, memory module 3920, memory module 3930, and
memory module 3940. CPU/memory controller subsystem
3910 includes a CPU 3912 coupled to a memory controller
3914. Memory module 3920, memory module 3930, and
memory module 3940 are coupled to memory controller 3914
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in subsystem 3910 via the same memory channel. Memory
module 3920 includes a processor 3921 and memory 3922.
Memory module 3930 includes a processor 3931 and
memory 3932. Memory module 3940 includes a processor
3941 and memory 3942. Memory 3922, memory 3932, and
memory 3942 typically contain instructions and/or data used
by the CPU 3912 and/or a respective one of processor 3921,
processor 3931, and processor 3941.

Memory module 3920 is coupled to memory controller
3914 to receive a first rank select signal 3961 (rank select #1).
Memory module 3930 is coupled to memory controller 3914
to receive a second rank select signal 3962 (rank select #2).
Memory module 3940 is coupled to memory controller 3914
to receive a third rank select signal 3963 (rank select #3).
Each of these rank select signals 3961-3963 is only received
by one memory module 3920, 3930, and 3940, respectively. It
should be understood that memory modules 3920, 3930, and/
or 3940 may receive additional rank select signals (not shown
in FIG. 39) that can be used to select additional ranks of
memory on modules 3920, 3930, and/or 3940.

When memory controller 3914 sends memory modules
3920, 3930, and 3940 a write command within a configured
memory aperture, only the single rank select signal 3961-
3963 corresponding to the addressed memory module 3920,
3930, and 3940 is asserted. The other rank select signals rank
select signal 3961-3963 are typically deasserted. For
example, if memory controller is sending a command to write
data to memory module 3930, rank select signal #2 3962 will
be asserted. Rank select signal #1 3961 and rank select signal
#3 3963 will be deasserted.

When memory controller 3914 send memory modules
3920, 3930, and 3940 a write command having an address
within a memory aperture configured for a respective
memory module 3920, 3930, and 3940 and the respective
rank select signal 3961-3963 asserted, memory modules
memory modules 3920, 3930, and 3940 can be configured to
store the write data in response to that write command (re-
gardless of the state of that memory module’s rank select
signal). In other words, one or more of memory modules
3920, 3930, and 3940 can be configured to respond to a write
that was directed to a different one of memory modules 3920,
3930, and 3940 coupled to the same memory channel. In this
manner, a broadcast write memory aperture may be config-
ured. Broadcast writes and broadcast write apertures are
described herein. Thus, for the sake of brevity, they will not be
repeated here. In particular, reference is made to the discus-
sions of FIGS. 13, 14, and 17-19 for discussions of broadcast
writes and broadcast write apertures.

For example, consider a case where a broadcast aperture
has been configured for an address that resides on memory
module 3920. Memory module 3930 and memory module
3940 can be configured to store data in response to write
commands having addresses within the broadcast aperture
even though the rank select signals 3962-3963 sent to
memory modules 3930-3940, respectively, are deasserted.
When configured with a broadcast aperture, memory module
3930 and memory module 3940 will respond to a write to the
broadcast aperture and store the write data. The data written to
the broadcast aperture may be stored in memories 3932 and
3942 by memory module 3930 and 3940, respectively. The
data written to the broadcast aperture may be stored in a local
memory (as described previously) on memory modules 3930
and 3940, respectively.

The write command to the broadcast aperture may include
a bank select value. This bank select value may be encoded in
order to specify which of memory modules 3920-3940 should
store the data associated with the write command. An
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example of this encoding is further detailed with reference to
Table 5. Table 5 gives an example encoding of bank select
values and the corresponding one or more of memory mod-
ules 3920, 3930, and 3940 that should store the data associ-
ated with the write command. It should be understood that
even though the bank address is different because of the
encoding, the actual location on memory modules 3920,
3930, and 3940 that is written to can be the same for memory
modules 3920, 3930, and 3940.

TABLE 5
Bank select Module Operation in response to write to broadcast aperture
Value Module 3920 Module 3930 Module 3940
0 store write data ignore write ignore write
1 ignore write store write data ignore write
2 ignore write ignore write store write data
3 reserved reserved reserved
4 store write data store write data ignore write
5 store write data ignore write store write data
6 ignore write store write data store write data
7 store write data store write data store write data

The write command to the broadcast aperture may include
a write enable value. This enable value may be encoded in
order to specify which of memory modules 3920-3940 should
store the data associated with the write command. An
example of this encoding can be detailed with reference to
Table 5. Table 5 gives an example encoding of bank select
values and the corresponding one or more of memory mod-
ules 3920, 3930, and 3940 that should store the data associ-
ated with the write command. In this case, however, the write
enable value takes the place of the bank select value in Table
5.

FIG. 40 is a block diagram illustrating a memory module
broadcast subsystem. In FIG. 40, subsystem 4001 comprises
subsystem 4000 and local memory 4024. Subsystem 4000
comprises processor 4012, logic 4016, memory controller
4017, CA input interface 4096, multiplexor (MUX) logic
4019, CA, interface 4086, CA, interface 4087, and high-
speed (HS) serial DQ interface(s) #0 4078, and broadcast
bridge 4027. Subsystem 4000 also includes memory/cache
controller(s) 4018. Memory/cache controller 4018 is opera-
tively coupled to local memory 4024. Local memory 4024
may be operatively coupled to local memory 4024 by one or
more memory channels. It should be understood that sub-
system 4001 may be included on one or more memory mod-
ules 3920, 3930, and/or 3940. Thus, it can be seen that sub-
system 4000 may be used as IC 2610 in memory modules
2600, 2601, and/or 2602 and that subsystem 4001 may be
disposed on memory modules 3020, 3220, 3420, 3920, 3930,
3940, 2600, 2601, and/or 2602.

In an embodiment, a memory module having subsystem
4001 (e.g., memory modules 3020, 3220, 3420, 3920, 3930,
3940, 2600, 2601, and/or 2602) can have a memory interface
configured to connect with a memory controller. Subsystem
4000 may be an integrated circuit device that is coupled to the
memory interface. Subsystem 4000 includes a processor
4012, CA, interface 4087, and broadcast bridge 4027. CA,
interface 4087 is configured to connect to a first type of
dynamic memory integrated circuit devices. A plurality of the
first type of dynamic memory integrated circuit devices is
coupled to CA, interface 4087.

Broadcast bridge 4027 is configured to store data in
response to a write command on the memory interface having
the rank select signal deasserted, and an address with a con-
figured address aperture. Broadcast bridge 4027 may be con-
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figured with the address range of the address aperture. Broad-
cast bridge 4027 can store data according to encoded bank
select values (or encoded write enable values) according to,
forexample, Table 5. Broadcast bridge 4027 can store the data
associated with the write command having the rank select
signal deasserted in the plurality of the first type of dynamic
memory integrated circuit devices coupled to CA, interface
4087. Broadcast bridge 4027 can store the data associated
with the write command (having the rank select signal deas-
serted) in local memory 4024. In other words, when broadcast
bridge 4027 is configured appropriately, the rank select signal
is treated as a do not care. For example, when the broadcast
aperture is configured to lie within memory module 3920,
modules 3930 and 3940 are going to respond regardless of the
states of rank select signal #1 3961, rank select signal #2
3962, and rank select signal 3963.

A memory module having subsystem 4001 (e.g., memory
modules 3020, 3220, 3420, 3920, 3930, 3940, 2600, 2601,
and/or 2602) can have a memory interface to connect to a
memory channel. The interface can include a rank select
signal. A rank of dynamic memory integrated circuits may be
selected by the rank select signal. Subsystem 4000 may be an
integrated circuit device that is coupled to the memory inter-
face. Subsystem 4000 includes processor 4012, CA, interface
4087, and broadcast bridge 4027. CA interface 4087 can be
coupled to the rank of dynamic memory integrated circuits
are selected by the rank select signal. CA input interface 4096
can receive commands from a memory controller. CA input
interface can receive a rank select signal (CS) that is to select
the rank of dynamic memory integrated circuits coupled to
CA, interface 4087.

Broadcast bridge 4027 can store data in response to a write
command from CA input interface 4096. Broadcast bridge
4027 can store data in response to a write command from CA
input interface 4096 that has the rank select signal deasserted.
Broadcast bridge 4027 can store data in response to a write
command from CA input interface 4096 that has the rank
select signal deasserted and an address that is within a con-
figured address aperture. Broadcast bridge 4027 can store, in
the rank of dynamic memory integrated circuits, data in
response to a write command from CA input interface 4096
that has the rank select signal asserted and an address that is
within the configured address aperture.

Subsystem 4000 can receive a first memory write com-
mand. This first memory write command may be received
from a memory controller via a memory interface of a
memory module and via CA input interface 4096. The
memory interface may include a rank select signal (e.g., a
chip select or CS signal). The first memory write command
has the rank select signal deasserted. The first memory write
command has an address that is within a configured address
aperture. In response to the first memory write command,
subsystem 4000 can store data in a rank of dynamic memory
integrated circuits coupled to CA, interface 4087 (or arank of
dynamic memory integrated circuits coupled to the CA, inter-
face 4086, or both). Subsystem 4000 may also store data in
local memory 4024 in response to the first memory write
command.

Subsystem 4000 can, in response to a second memory write
command having the rank select signal asserted and an
address within the configured aperture, store the associated
data in the rank of dynamic memory integrated circuits
coupled to CA, interface 4087 (or the rank of dynamic
memory integrated circuits coupled to CA, interface, as
appropriate). In other words, subsystem 4000 can be config-
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ured to ignore the rank select signal for memory write com-
mands that are within a configured (designated) memory
address range (an aperture).

It should be understood that when broadcast bridge 4027 is
configured to treat a rank select signal is treated as a do not
care, it will respond to addresses that lie on other memory
modules. For example, when the broadcast aperture is con-
figured to lie within memory module 3920, modules 3930 and
3940 are going to respond regardless of the states of rank
select signal #1 3961, rank select signal #2 3962, and rank
select signal 3963. This causes “address aliasing” wherein an
access to the broadcast aperture corresponds to locations on
different memory modules 3920, modules 3930 and 3940.
Since these locations are serving as the broadcast aperture, it
is important to ensure that no accesses occur to those loca-
tions (unless they are a true access to the broadcast aperture).
Address aliasing is described herein with particular reference
to FIG. 18 wherein blocks of addresses 1805 A are set aside on
each module to serve as the broadcast aperture (and not as
regular memory).

FIG. 41 is a block diagram of a multi-module synchroni-
zation system. In FIG. 41, computer system 4100 comprises
CPU/memory controller subsystem 4110, I/O controller
4130, and memory modules 4120. CPU/memory controller
subsystem 4110 includes a CPU 4112 coupled to a memory
controller 4114. One or more memory modules 4120 are
coupled to memory controller 4114 in subsystem 4110. Each
memory module 4120 includes a processor 4121 and memory
4122. Memory 4122 typically contains instructions and/or
data used by the CPU 4112 and/or processor 4121.

InFIG. 41, memory 4122 is shown as holding a semaphore
4123 that is accessible to both CPU 4112 and processor 4121.
It should be understood that the actual location of semaphore
4123 shown in FIG. 41 is merely an example. Semaphore
4123 can be stored in (and/or read from) CPU 4112, memory
controller 4114, processor 4121, local memory associated
with processor 4121 (not shown in FI1G. 41), cache associated
with CPU 4112 (not shown in FIG. 41), or cache associated
with processor 4121 (not shown in FIG. 41). In general,
semaphore 4123 can be stored in (and/or read from) any
location, device, or function that is accessible to both CPU
4112 and processor 4121.

Processor 4121 can write semaphore 4123 to indicate pro-
cessor 4121 is requesting a resource. Likewise, processors
4121 on other memory modules can write to semaphore loca-
tions on their memory modules to request the resource. CPU
4112 iteratively reads semaphore 4123. In response to reads
of the semaphore, memory module 4120 sends an indicator
(e.g., returning the value written by processor 4121) of the
request for the resource to CPU 4112. Memory module 4120
receives a write to the semaphore 4123 that indicates a grant
of the request for the resource. Processor 4121 may poll the
semaphore location to determine when the write to the sema-
phore 4123 has occurred.

FIG. 42 is a flowchart of a method of implementing a
semaphore. The steps illustrated in FIG. 42 may be performed
by one or more elements of system 4100. The steps illustrated
in FIG. 42 may be performed by one or more elements of
system 100, system 700, system 1100, system 2500, system
2501, system 2502, system 2503, system 3000, system 3200,
system 3400, and/or system 3600. The steps illustrated in
FIG. 42 are described in terms of a semaphore. However, it
should be understood that these basic processes can be used to
implement other types of mutex’s such as locks, barriers, tree
barriers, and flags.

A processor included on a memory module writes a
memory location on the memory module to indicate a request
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for aresource (4202). For example, processor 4121 may write
semaphore 4123 to indicate a request for a resource. Iterative
reads of the memory location are received from a CPU
(4204). For example, CPU 4112 may iteratively read sema-
phore 4123 in order to determine when (and if) processor
4121 has written semaphore 4123 to indicate a request for a
resource. In response to a read of the memory location, an
indicator of the request for the resource is sent (4206). For
example, in response to a read of semaphore 4123, memory
module 4120 may send semaphore 4123 (as written by pro-
cessor 4121) to CPU 4112 via memory controller 4114. A
write to a memory location that indicates a grant of the request
for a resource is received (4208). For example, memory mod-
ule 4120 may receive a write to semaphore 4123 (or another
location) that indicates the request for a resource has been
received.

In general, the procedure described above from imple-
menting a semaphore can be described as using a polling
mechanism by CPU 4112. In other words, CPU 4112 peri-
odically reads from a set of memory/storage locations that are
spread across modules 4120 (e.g., in memories 4122 and/or
processor 4121, etc.) If processor 4121 wants to set a sema-
phore, processor 4121 writes a predetermined memory/stor-
age location to aknown value (e.g., a “1” to indicate processor
4121 wants access to a resource). The CPU 4112, during one
of'its periodic reads, reads the semaphore from the predeter-
mined memory/storage location and sees that the predeter-
mined memory/storage location has been set to the known
value—thus indicating to CPU 4112 that processor 4121
wants something. CPU 4112 can set predetermined memory/
storage locations accessible to processor 4121 to indicate
things (e.g., a lock has been granted.)

To create a semaphore (i.e., lock), CPU 4112 (or processor
4121) can allocate memory to: (1) implement the semaphore,
(2) indicate which process currently has the semaphore, and
(3) indicate which processes are requesting the semaphore.
The memory allocated to create the semaphore can be allo-
cated statically or dynamically. The memory allocated to
implement the lock is preferably allocated in CPU 4112’s
memory space (i.e., not in memory dedicated to processor
4121). The memory allocated to indicate which processes are
requesting the semaphore can be allocated in each processor
4121’s memory space (e.g., could be one or more registers on
processor 4121, memory dedicated to processor 4121, etc.).
One flag for each process running on memory modules 4120
can be allocated (e.g., can be viewed as an array of flags).
Additional flags can be allocated if CPU 4112 and processor
4121 need to synchronize processes. A predetermined value
indicates which processes can have access to the semaphore.
Table 6 contains pseudo-code for initializing the memory to
implement the semaphore and indicate which processes are
requesting the semaphore.

TABLE 6

Allocate int LockVal
/* allocate memory to implement the semaphore */

Allocate int LockProc
/* allocate memory to indicate which process currently has the
semaphore

Allocate int LockRequest[NumProc]
/* allocate memory to indicate which processes are requesting the
semaphore.
NumProc equals the number of processes running */

LockVal = 0; ?* Signifies that the lock is currently available */

For ( i=0; i<NumProcs; i++) {
LockRequest[i]=0;
/* All LockRequest flags set to O (i.e., not requesting
lock/semaphore) */
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TABLE 6-continued

/* programs/threads/processes can begin executing */

To request a lock, a process running on a processor 4121
writes a predetermined value (e.g., a “1”) in a memory/stor-
age address known and accessible to both processor 4121 and
CPU 4112 (e.g., LockRequest[process identification num-
ber]). CPU 4112 polls the lock request flags (e.g., each of
LockRequest[0 to NumProcs]) to see if any process is
requesting the lock. If a process is requesting the lock, CPU
4112 sets the lock to a predetermined value (e.g., “17) to
indicate the lock is in use. CPU 4112 also sets the LockProc
memory/storage to the process identification number to indi-
cate which process currently has the lock. If other CPU 4112
threads are contending for the lock, setting the LockProc can
be done using, for example, a “compare and swap (CAS)” or
a “load link/store conditional (LL/SC)” type of instruction.
The CPU may then sets a second value (e.g., “2”) into the
LockRequest[process identification number] location to indi-
cate that the lock has been granted to that process. The process
can spin-wait on the LockRequest[process identification
number]| location for the “grant” value. Alternatively, the
process can suspend and resume when awoken by processor
4121 when the lock is granted by CPU 4112. Table 7 contains
an example execution timeline of a lock request and grant
procedure. Note: ProcID corresponds to the process identifi-
cation number.

TABLE 7

CPU 4112 process Processor 4121 process

—

Processes start execution
2 Process requests the lock
LockRequest[ProcID] = 1
Process waits looking for
LockRequest[ProcID] ==
For example, process can
spin-wait or wait to be
awoken by processor 4121

3 CPU 4112 polls lock request
locations to determine if any
process in processors 4121
are requesting the lock
(e.g., any LockRequest][ ]
locations equal “1”)

If any values are set, it
indicates at least one
process is waiting for
(requesting) a lock

4 ‘When CPU 4112 detects a
process is requesting the
lock and the lock is
available (LockVal is 0)

CPU 4112 sets LockVal to 1
CPU 4112 sets LockProc to the
requesting process ID (e.g.,
LockProc = ProcID)
CPU 4112 sets
LockRequest[ProcID] to 2
thereby granting to lock to the
process associated with ProcID
(This is typically a write to
memory/storage on module
4120)
5 If process is spin-waiting,
process will see that
LockRequest[ProcID] ==
2 and continue forward with
lock
If process is suspended,
process will be awoken
and see that
LockRequest[ProcID] ==
2 and continue
forward with lock
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To release a lock, the process running on processor 4121
that was granted the lock writes a predetermined value (e.g.,
a “0”) in a memory/storage address known and accessible to
both processor 4121 and CPU 4112 (e.g., LockRequest[pro-
cess identification number] or a different location). CPU 4112
polls the location to see if the lock has been release (i.e., when
the value at the location is set to “0”). CPU 4112 sets the value
of the lock (LockVal) to “0” again to indicate the lock is
available. CPU 4112 may optionally set LockProc to an
unused value (e.g., -1, or NumProcs). Table 8 contains an
example execution timeline of a lock release procedure.

TABLE 8

CPU 4112 process Processor 4121 process

1 Processes releases the lock
Processor 4121 sets
LockRequest[ProcID] = 0
2 CPU 4112 polls location to determine Process continues executing
if lock has been released (e.g.,
LockRequest[ProcID] == 0)
3 CPU4112 sets LockVal = 0 to indicate
lock is released
CPU 4112 may not set
LockVal = 0 if another process
is waiting for the lock
4 CPU 4112 sets LockProc to an unused
value
CPU 4112 may not set
LockProc to an unused value if
another process is waiting for
the lock
5 When CPU 4112 detects a process is
requesting the lock and the lock is
available (LockVal is 0)
CPU 4112 sets LockVal to 1 (if
not already 1)
CPU 4112 sets LockProc to the
requesting process ID if not
already done (e.g.,
LockProc = ProcID)
CPU 4112 sets
LockRequest[ProcID] to 2
thereby granting to lock to the
process associated with ProcID
(This is typically a write to
memory/storage on module
4120)

CPU 4112 and/or processors 4121 may use other data
structures and/or algorithms to implement and manage sema-
phores. For example, CPU 4112 and processor 4121 may use
alinked list of request flags instead of an array of request flags
(i.e., LockRequest| ]). In addition, if processor 4121 (or mod-
ule 4120) has multiple processes waiting for a lock, processor
4121 can request the lock. Processor 4121 can then grant the
lock to each waiting process without releasing the lock back
to CPU 4112. This decreases the amount of polling CPU 4112
needs to do. CPU 4112 only needs to poll one location asso-
ciated with each processor 4121 instead of polling one loca-
tion associated with each process. Since there may be more
than one process being executed by each processor 4121, the
number of processes is likely to outnumber the number of
processors 4121 in system 4100.

A process synchronization function that system 4100 can
implement is a barrier. A barrier for a group of threads or
processes means any process must stop executing the process
at a given barrier point and cannot proceed until all other
processes in the group reach this barrier. The barrier synchro-
nization function allows processes running on processors
4121 and/or processor cores in different processors 4121
and/or modules 4120 and/or CPU 4112 to be synchronized.
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The barrier synchronization function may be used to prevent
race conditions among a group of threads or processes.

To create a barrier, CPU 4112 (or processor 4121) can
allocate memory to: (1) track how many processes/cores have
reached the barrier, and (2) indicate when processes/cores can
proceed past the barrier. The memory allocated to create the
barrier can be allocated statically or dynamically. The
memory allocated to track how many processes/cores have
reached the barrier is preferably allocated in CPU 4112’s
memory space (i.e., not in memory dedicated to processor
4121). The memory allocated to indicate when processes/
cores can proceed past the barrier can be allocated in each
processor 4121°s memory space (e.g., could be one or more
registers on processor 4121, memory dedicated to processor
4121, etc.). One flag for each process running on memory
modules 4120 can be allocated (e.g., can be viewed as an
array of flags). The memory allocated to indicate when pro-
cesses/cores can proceed past the barrier can be initialized by
CPU 4112 by writes to modules 4120. The memory allocated
to indicate when processes/cores can proceed past the barrier
can be initialized by processors 4121. The memory allocated
to indicate when processes/cores can proceed past the barrier
can be initialized by processors 4121 by, for example, initial-
ization calls. Additional flags can be allocated if CPU 4112
and processor 4121 need to synchronize processes. Table 9
contains pseudo-code for initializing the memory to imple-
ment barriers. Note: NumProcs is the number of processes to
be synchronized.

TABLE 9

Allocate int NumAtBarrier
/* allocate memory to track how many processes/cores have reached
the barrier */
Allocate int BarrierFlags[NumProcs]
/* allocate memory to indicate when processes/cores can proceed
from the barrier*/
NumAtBarrier = 0; /* indicates that no processes have reached the barrier
*/
For ( i=0; i<NumProcs; i++) {
BarrierFlags[i]=0;
/* All BarrierFlags set to O (i.e., no processes are at the barrier) */

/* programs/threads/processes can begin executing */

To implement barriers, processes begin executing on pro-
cessors 4121. When a process executing on processor 4121
reaches the barrier, it writes a predetermined value (e.g., 1) to
the memory allocated to indicate when processes/cores can
proceed past the barrier. This indicates that the process is
waiting at the barrier. The process can spin-wait or suspend
while it waits for an indicator that communicates when pro-
cesses/cores can proceed past the barrier. When all processes
have reached the barrier, CPU 4112 sets the memory/storage
that tracks how many processes/cores have reached the bar-
rier to zero. CPU 4112 also sets all the memory allocated to
indicate when processes/cores can proceed past the barrier to
a predetermined value (e.g., 0) that indicates that the pro-
cesses/cores can proceed past the barrier. CPU 4112 may set
memory allocated to indicate when processes/cores can pro-
ceed past the barrier using a broadcast write, described
herein. If the processes were spin-waiting, they see that the
memory allocated to indicate when processes/cores can pro-
ceed past the barrier has been set to the predetermined value
and proceed forward. If the processes were suspended, CPU
4112 may send a signal to processor 4121 to wake up the
suspended process. CPU 4112 may send a signal to processor
4121 to wake up the suspended process using a broadcast
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write, described herein. Table 10 contains an example execu-
tion timeline of a lock release procedure.

TABLE 10

CPU 4112 process Processors 4121 process

1 Processes start execution
2 CPU 4112 polls known locations
(e.g., BarrierFlags) to
determine if processes
executing on processors 4121
have reached the barrier
If any of the known locations
are set to a predetermined
value, it indicates a process
is waiting at the barrier.
CPU 4112 can update the number
of processes at the barrier
(e.g., NumAtBarrier).
3 When an individual process
reaches a barrier:
The barrier flag is set to 1
for that process (e.g.,
BarrierFlag[ProcID] = 1).
BarrierFlag[ProcID] ==
indicates that the process
associated with ProcID is
waiting at the barrier.
Process waits for
BarrierFlag[ProcID] ==
4 When CPU 4112 detects that
all processes have reached
the barrier (i.e., NumAtBarrier ==
NumProcs):
CPU 4112 sets BarrierFlag| |
array valuesto 0
5 If a process is spin-waiting,
process will see that
BarrierFlag[ProcID] ==
and proceed to execute past
barrier.
If process is suspended, process
will be awoken and see that
BarrierFlag[ProcID] ==
and proceed to execute past
barrier.

CPU 4112 and/or processors 4121 may use other data
structures and/or algorithms to implement and manage barri-
ers. For example, tree barriers may be implemented. Instead
of one barrier flag per core/process, CPU 4112 and/or pro-
cessors 4121 may use one barrier flag per module 4120 or
processor 4121. Processor 4121 may determine (local to
module 4120) when all of the participating cores/threads have
reached the barrier. When all of the participating cores/
threads associated with module 4120 have reached the bar-
rier, processor 4121 may then set the BarrierFlag associated
with processor 4121. This can decrease the amount of polling
CPU 4112 needs to do. CPU 4112 only needs to poll one
location associated with each processor 4121 instead of poll-
ing one location associated with each processor 4121. Since
there may be more than one process being executed by each
processor 4121 that is participating in the barrier, the number
of processes is likely to outnumber the number of processors
4121 in system 4100. Alternatively, module 4120 may send
an interrupt to CPU 4112 instead of having CPU 4112 poll.

System 4100 may implement flags. Flags allow fine-
grained synchronization and concurrency between two or
more processes executing on processors 4121 and/or CPU
4112. A process waiting on the flag does not necessarily need
to spin-wait or suspend execution. An example use of a flag
involves a process (e.g., process B) that need some input from
another process (e.g., process A) before process B starts a
computation. Process A and process B can communicate the
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input from process A to process B in a shared region of
memory. In addition, process A and process B can commu-
nicate using an additional location that acts as a flag. For
example, when the flag is a O (zero), the input from process A
to process B is not in the shared region of memory. When the
flag is a 1 (one), the input from process A to process B is
stored in the shared region of memory.

For example, process B may loop and/or check for the flag
to be setto a 1. If the flag is not set to a 1, process B may do
other work. When process A is ready to write data into the
shared region of memory, it checks the flag. If the flagis a 0,
process A writes data into the shared region of memory and
sets the flag to a 1 (for example, by using a compare-and-
swap—CAS—instruction or a load-link and store-condi-
tional—LI/SC—pair of instructions.) If the flag is a 1, pro-
cess A waits until the flag is set to a 0 and then writes data into
the shared region of memory and sets the flag to a 1. Process
B detects that the flag has been set to a 1. In response, process
B reads the data from the shared region of memory into
non-shared storage. Process B then sets the flag to a 0 (for
example, by using CAS or LL/SC.) Process B may then
perform its computation. Process A may write more data into
the share space and set the flag back to a 1 before process B is
done with its computation.

In the foregoing example, the flag may be associated with
the shared region of memory that process A (on CPU 4112)
uses to pass data to process B (onmodule 4120). To create this
flag and shared memory region, CPU 4112 (or processor
4121) allocates memory to: (1) implement the flag, and (2)
implement the shared region of memory. The memory allo-
cated to create the flag and shared region can be allocated
statically or dynamically. The memory allocated to imple-
ment the flag is preferably allocated in the process’s memory
space. The flag is initialized by setting it to a predetermined
value (e.g., FlagVal=0). Once the flag is initialized, process A
and process B may begin executing. Table 11 contains an
example execution timeline of a procedure for using flags.

TABLE 11

CPU 4112 process Processors 4121 process

1 Process B starts execution and
periodically checks the flag
(i.e., FlagVal) to see if the
value is 1
If FlagVal == 0, the process
may continue other work.
2 When process A is ready to
write data into the shared
region of memory for
process B to use:
Process A checks FlagVal
If FlagVal == 0, process
A writes data into the
shared region of memory
and set FlagVal = 1.
If FlagVal == 1, process
A waits until FlagVal == 0.
After FlagVal changes
to 0, process A writes
data into the shared
region of memory and set
FlagVal = 1.
3 When process B detects that
FlagVal == 1:
Process B read the data from
the shared memory region into
non-shared storage
Process B then set FlagVal = 0
Process B then performs its
computation
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TABLE 11-continued

CPU 4112 process Processors 4121 process

4 Process A may write more
data into the shared memory
region before process B has
completed its computation
5 Process B continues to
periodically check FlagVal to
see if there is more data to
process.

System 4100 may allocate semaphores, locks, flags, barri-
ers, etc. using page granularity in order to reduce the number
of translation look-aside buffer (TLB) entries used. System
4100 may align barrier flags and/or locks at the same address
across multiple memory controller 4114 channels. This may
allow CPU 4112 to do a single read across the multiple
channels when CPU 4112 is polling the align barrier flags
and/or locks. For example, consider an arrangement where
there are four memory controller 4114 channels each popu-
lated with at least one module 4120. In addition, BarrierFlags
[0:3] are each mapped to the same address, but on different
modules 4120 that are each on a different memory controller
4114 channel. In this case, one read from CPU 4112 to the
same address across all the channels (if CPU 4112 supports
this operation) will return the values of all of BarrierFlags[0:
3]. This can reduce the number of polling operations by CPU
4112 by a factor of four.

It should also be understood that semaphores, locks, bar-
riers, flags, etc. can be implemented for processes running on
(or sharing) a single module 4120 in memory local to module
4120. This eliminates the need for other modules 4120 and/or
CPU 4112 to have access to these semaphores, locks, barriers,
flags, etc. Locks and barriers may be further optimized by
implementing them in a hierarchical manner. For example,
once a lock is acquired by a process on a module 4120, all
processes executing on that module are given access to the
lock before module 4120 releases the lock. In another
example, the number of process waiting at a barrier can be
updated at the module 4120 level. In other words, module
4120 may wait until all the processes executing on module
4120 have reached the barrier before communicating to CPU
4112 that processes are waiting. This reduces the amount of
communication between module 4120 and CPU 4112. Simi-
larly, the “release” signal of a barrier can be communicated by
sending one signal to module 4120. Module 4120 then indi-
vidually sets the indicators associated with each process to
indicate the process may proceed past the barrier.

System 4100 may use methods other than polling by CPU
4112 to communicate asynchronously with CPU 4112. For
example, module 4120 may send a temperature over thresh-
old error signal. In another example, module 4120 may delib-
erately create an ECC error when sending data to memory
controller 4114. When CPU 4112 receives an indication of
the error, CPU 4112 may read a predetermined memory loca-
tion (or register) on module 4120 to determine if the received
error is corresponds to a synchronization event on module
4120 or corresponds to an actual error. If the error indicator
corresponds to a synchronization event on module 4120, CPU
4112 can take the proper actions, described herein.

Module 4120 may signal an interrupt causing CPU 4112 to
execute an interrupt handler routine. This interrupt handler
routine may check memory and/or registers on module 4120
to determine if the interrupt was a request for communication
(i.e., a synchronization event) or an interrupt for some other
reason.
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FIG. 43 is a block diagram of a graphics rendering system.
InFIG. 43, system 4300 comprises CPU 4310, memory mod-
ule 4320, memory module 4330, memory module 4340,
memory module 4350, memory module 4360, and memory
module 4370. CPU 4310 memory controller 4314. Memory
controller has M number of memory channels. Memory mod-
ule 4320, memory module 4330, and memory module 4340
are coupled to memory controller 4314 via a memory channel
#1 4381. Memory module 4350, memory module 4360, and
memory module 4370 are coupled to memory controller 4314
via a memory channel #2 4382. Additional memory modules
(not shown in FIG. 43) can be coupled to memory controller
4314 via additional memory channels (e.g., memory channel
#M 4383).

Each memory module 4320, 4330, 4340, 4350, 4360, and
4370 includes a processor 4325, 4335, 4345, 4355, 4365, and
4375, respectively. Each processor 4325, 4335, 4345, 4355,
4365, and 4375 includes a plurality of graphics processors
4326, 4336, 4346, 4356, 4366, and 4376, respectively. Each
memory module 4320, 4330, 4340, 4350, 4360, and 4370
includes a memory 4322, 4332, 4342, 4352, 4362, and 4372,
respectively. Memories 4322, 4332, 4342, 4352, 4362, and
4372 typically contain instructions and/or data used by the
CPU 4310 and/or processors 4325, 4335, 4345, 4355, 4365,
and 4375, and/or graphics processors 4326, 4336, 4346,
4356, 4366, and 4376.

Vertex and texture data for an entire frame (e.g., frame #N)
can be sent to memory modules 4320, 4330, and 4340. This is
efficiently performed using a broadcast write to memory
modules 4320, 4330, and 4340. Broadcast writes to a broad-
cast aperture were described previously so they will not be
repeated here for the sake of brevity. Once memory modules
4320, 4330, and 4340 hold vertex and texture data, the CPU
4310 can assign or re-assign rendering tasks to processors
4325,4335, and 4345 and/or graphics processors 4326, 4336,
and 4346. In an embodiment, CPU 4310 can assign or re-
assign rendering tasks to processors 4325, 4335, and 4345
and/or graphics processors 4326, 4336, and 4346 efficiently
because all of the memory modules 4320, 4330, and 4340
(and thus all the processors 4325, 4335, and 4345, and/or
graphics processors 4326, 4336, and 4346) have access to all
of the data necessary to render the entire frame (or at least
enough vertex and texture data to render the portion assigned
to memory modules 4320, 4330, and 4340, respectively).
This process of dividing up a frame into portions to be ren-
dered individually before combining them back known as
Split Frame Rendering (SFR).

The re-assignment of rendering areas in SFR may be based
on the amount of time each processor 4325, 4335, and 4345,
and/or graphics processor 4326, 4336, and 4346 took to ren-
der the previous frame. For example, if a first one of proces-
sors 4325, 4335, and 4345, and/or graphics processors 4326,
4336, and 4346 took the longest to render its portion of the
frame, and a second one of processors 4325, 4335, and 4345
and/or graphics processors 4326, 4336, and 4346, took the
least amount of time, then the area assigned to the first CPU
may be reduced, and the area assigned to the second may be
increased. Other load balancing techniques may be applied.
There-assignment of rendering areas in SFR may be based on
other metrics associated with processor 4325, 4335, and
4345, and/or graphics processor 4326, 4336, and 4346. These
metrics may include processor 4325, 4335, and 4345 instruc-
tions or cycles, memory usage, power usage, or other cost
functions.

Vertex and texture data for another entire frame (e.g., frame
#N+1) can be sent to all of the memory modules 4350, 4360,
and 4370. This is efficiently performed using a broadcast
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write to memory modules 4350, 4360, and 4370. Note that
this broadcast write is performed on a different memory chan-
nel (i.e., channel #2 4382) than the broadcast write used to
send vertex and texture data to memory modules 4320, 4330,
and 4340 to render frame #N. Once all of all of the memory
modules 4350, 4360, and 4370 hold all of the vertex and
texture data, the CPU 4310 can assign or re-assign rendering
tasks to processors 4355, 4365, and 4375, and/or graphics
processors 4356, 4366, and 4376. CPU 4310 can assign or
re-assign rendering tasks to processors 4355, 4365, and 4375,
and/or graphics processors 4356, 4366, and 4376 efficiently
because all of the memory modules 4350, 4360, and 4370
(and thus all the processors 4355, 4365, and 4375, and/or
graphics processors 4356, 4366, and 4376) have access to all
of'the data necessary to render the entire frame.

Alternate Frame Rendering (AFR) is a technique where the
set of processing units are divided up into groups to work on
multiple frames concurrently in a round-robin fashion (e.g.,
frame #N and frame #N+1 are worked on concurrently). SFR
and AFR may be mixed across memory modules memory
modules 4320, 4330, 4340, 4350, 4360, and 4370 and graph-
ics processors 4326, 4336, 4346, 4356, 4366, and 4376. For
example, groups of memory modules 4320, 4330, and 4340
on the same memory channel 4381 may be assigned to render
frame #N. Memory modules 4350, 4360, and 4370 may be
assigned to render frame #N+1. In this example, AFR is used
across memory channels while SFR is used within a single
memory channel Within each of the frames being rendered
within a group of memory modules on the same memory
channel, graphics processors 4326, 4336, and 4346 may be
assigned rendering tasks according to SFR. The areas
assigned to each of the graphics processors 4326, 4336, and
4346 within a memory module group may be reassigned.

For example, consider a system in which within each pro-
cessors 4325, 4335, and 4345 there are eight graphics proces-
sors 4326, 4336, and 4346, respectively. If load analysis from
the last frame indicates that most of the computations were
performed at the lower half of the screen, then an example
dynamic load assignment would be to split the current frame
into three horizontal strips. The first memory modules 4320
will take the top part of the frame (where there is less geom-
etry to render); the second memory modules 4330 will take
the next lower part, with the third memory modules 4340
taking the last portion. Within each memory modules 4320,
4330, 4340, the load is balanced equally by splitting it into 8
tiles with one of each of the eight graphics processors 4326,
4336, and 4346 assigned to a respective tile. This would result
in maximizing throughput and reducing latency of the graph-
ics system. This creates a hierarchal division of work having
AFR across the channels 4381-4383, dynamic SFR between
memory modules 4320, 4330, and 4340 within a given chan-
nel 4381, and static SFR within a processors 4325, 4335, and
4345. 1t should be understood that within each memory mod-
ules 4320, 4330, 4340, the load is may be balanced across an
odd number, as well as an even number, of tiles.

AFR across the channels 4381-4383 can also be applied to
stereoscopic rendering (i.e., 3-D rendering). For example,
where half the interleaved frames go to the left eye view and
the rest going to the right eye view, the following assignment
can be made: for frame #1, channel 1 4381 is assigned to
render the left eye view and channel 2 4382 is assigned to
render the right eye view; for frame #2, channel 1 4381 is
assigned to render the left eye view and channel 2 4382 is
assigned to render the right eye view, and so on. Example
assignments for a four channel system are given in Table 12
and Table 13. Table 12 gives an example assignment where
half of a scene with interleaved lines is the left eye view and
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the rest are the right eye view. Table 13 gives an example
where the frame rate is fast enough to dedicate all of the lines
in a scene to a particular eye.

TABLE 12
Frame Channel Assignment
1 1 Left eye view
2 Right eye view
2 3 Left eye view
4 Right eye view
3 1 Left eye view
2 Right eye view
4 3 Left eye view
4 Right eye view
etc. etc. etc.
TABLE 13
Frame Channel Assignment
1 1 Left eye view
2 2 Right eye view
3 3 Left eye view
4 4 Right eye view

ete.

a
©

It should be understood that the examples given in Tables 12
and 13 can be applied to other numbers of channels (e.g., N
channels).

FIG. 44A is an illustration of rendering assignments for a
first frame. FIG. 44B is an illustration of rendering assign-
ment for a second frame. In FIG. 44A, memory module 4320
has been assigned to render the top portion of the frame 4410.
Memory module 4330 has been assigned to render the middle
portion of the frame 4420. Memory module 4340 has been
assigned to render the bottom portion of the frame 4430.
Within memory module 4320, each of the graphics proces-
sors 4326 has been assigned equal size portions 4411, 4412,
4413, and 4414 of the top portion of the frame. Memory
modules 4330 and 4340 also have graphics processors 4336
and 4346, respectively, that are each assigned to portions of
4420 and 4430, respectively.

FIG. 44B is an illustration of rendering assignment for a
second frame after dynamic SFR has been applied. Note that
the top portion of the frame 4410 encompasses more area than
it did in FIG. 44A. However, within the top portion of the
frame 4410, the areas assigned to each of graphics processors
4326 are equal in area (though now larger than in the first
frame). Between frames, the horizontal lines dividing por-
tions 4410, 4420, and 4430 will move up and down (thus
altering the respective areas rendered by memory modules
4320, 4330, and 4340) based on a load analysis from at least
the previous frame.

It should be understood that the process of rendering
frames, or portions of frames, can be done using rasterization
techniques. It should also be understood that the process of
rendering frames, or portions of frames, can be done using ray
tracing techniques. Ray tracing is a technique for generating
an image by tracing the path of light through pixels in an
image plane. As the light path is traced, the effects on the light
of'its encounters with virtual objects are simulated.

When rendering using ray tracing, light rays are cast from
the eye view into an environment represented by a bounding
volume hierarchy (BVH). A BVH is a spatial data structure
representation of the objects in the scene. A BVH is typically
constructed in such a way to speed look up of ray to object
intersection in logarithmic time complexity. As aray traverses
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the scene and collides with objects represented by the BVH,
the material component for that object is picked up at the
ray-object intersection. Using either conventional ray tracing
or a refined method such as stochastic ray tracing, each ray
can then either be absorbed into the environment, reflected or
possibly refracted from the object. The reflection model used
could be a bidirectional reflectance distribution function
(BRDF) or possibly some other reflectance model.

Some rays can bounce once (in the case it got absorbed).
Others rays can bounce multiple time in a recursive manner,
with each bounce accumulating (and blending) more color
information associated with the ray. At the end of this process,
each ray will now contain the color information of the objects
it interacted with. This information can be sent to a processor
to be used to render the final image. Rays that completely
missed any object can be discarded. Because light rays (at
least in computer graphics) do not interfere with one another,
the ray tracing process is highly parallelizable.

In an embodiment, CPU 4310 may construct a BVH for a
frame. This BVH may be transferred to modules 4320, 4330,
4340, 4350, 4360, and/or 4370. The BVH may be transferred
to one or more of modules 4320, 4330, 4340, 4350, 4360,
and/or 4370 using a broadcast write. In an embodiment, mod-
ules 4320, 4330, 4340, 4350, 4360, and 4370 can all have
identical copies of the BVH model. CPU 4310 can then
allocate (cast) the tracing of rays among modules 4320, 4330,
4340, 4350, 4360, and/or 4370. Each of modules 4320, 4330,
4340, 4350, 4360, and/or 4370 can process the rays allocated
to that module 4320, 4330, 4340, 4350, 4360, and/or 4370,
respectively. Because the processing of each ray is indepen-
dent of the other rays, there is no need to pass information
between modules 4320, 4330, 4340, 4350, 4360, and 4370.
After each of modules 4320, 4330, 4340, 4350, 4360, and
4370 has finished processing its allocation of rays, the results
may be sent to CPU 4310. In an embodiment, in order to
reduce communication between CPU 4310 and modules
4320, 4330, 4340, 4350, 4360, and 4370, each module 4320,
4330, 4340, 4350, 4360, and 4370 may cast its own rays.

For a subsequent frame, if only the perspective of the eye
view has changed (i.e., the viewpoint is moving through a
static scene), the BVH on each of modules 4320, 4330, 4340,
4350, 4360, and 4370 will not need to be updated. Instead, a
new set of rays can be casted for the new viewpoint location.
It an object has changed shape for the subsequent frame, then
anew BVH can be constructed (e.g., by CPU 4310) and sent
to modules 4320, 4330, 4340, 4350, 4360, and 4370.

Within each module 4320, 4330, 4340, 4350, 4360, and
4370, each ray is traced through the BVH. At the end of a hit,
a ray is reflected, refracted, or absorbed with the object it
intersect. After a few bounces, rays may lose any spatial
coherency from its initial vector. Since each ray traced
through the BVH results in memory reads, memory accesses
may also become incoherent. Some bookkeeping can be done
within each module 4320, 4330, 4340, 4350, 4360, and 4370
to coalesced errant rays (i.e., rays that are cache misses) until
enough requests are accumulated to a particular memory
address to make a memory read worthwhile. Limiting
memory access can be the key to high performance.

For a particular frame, there can be imbalances in which a
module 4320, 4330, 4340, 4350, 4360, and 4370 finishes
earlier than others. The module 4320, 4330, 4340, 4350,
4360, and 4370 that finished last can limit the maximum
frame rate. Various heuristic methods can be employed to
balance loading among modules 4320, 4330, 4340, 4350,
4360, and 4370.

It should be understood that ray tracing can be used with
stereoscopic views as well. However, instead of tracing
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through the BVH for a single viewpoint, rays are traced for
two viewpoints (i.e., left and right eye views).

FIG. 45 is a block diagram illustrating a memory interface
that descrambles a scrambled memory interface. In FIG. 45,
a memory controller comprises a scramble code generator
4514 and XOR 4510. For example memory controller 2514,
memory controller 3014, memory controller 3214, memory
controller 3414, memory controller 3620, memory controller
3621, memory controller 3914, memory controller 4114, and/
or memory controller 4314 may comprises a scramble code
generator 4514 and XOR 4510 to scramble data sent across a
memory channel. A memory module comprises a look-up
table 4524, XOR 4520, and a processor 4512. Scramble code
generator is operable coupled to XOR 4520. XOR 4520
receives data (DATA[1:N] to be sent to the memory module.
Thus, XOR scrambles DATA[1:N] by exclusive-ORing it
with a scramble code generated by scramble code generator
4524. Scramble code generator 4524 may generate the
scramble code based on a Q number of bits subset of a physi-
cal address (PA[1:P]). The output of XOR 4520 is a
scrambled data (SDATA[1:N]).

Look-up table 4524 may use an R number of bits subset of
the physical address to output a reverse function that, when
XOR'd with SDATA[1:N] reverses the scrambling of DATA
[1:N]. Typically, the reverse function output by look-up table
4524 is the same scramble code output by scramble code
generator 4524. XOR 4520 receives the output of look-up
table 4524. XOR 4520 outputs descrambled data (i.e., DATA
[1:N]) to processor 4512. Look-up table 4524 may also be
used to scramble data to be sent from processor 4512 to the
memory controller.

In an embodiment, the memory controller scrambles data
sent to the memory module using a Linear Feedback Shift
Register (LFSR) or the like, in order to reduce the likelihood
of “bad” data patterns (e.g., DATA[0:N] all “0”’s for 8 word
burst.) The LFSR is seeded with a Q bit subset of the address
bits.

The memory controller may also map physical addresses to
Bank, row, column addresses in a manner that is not perfectly
sequential (e.g., the PA to chip select, Bank, row, column
address translations do not have necessarily have all of the
column addresses mapping 1:1 with corresponding PA bits.)
In other words, a physical address PA[N:0] may map to a
channel address of, for example, Row[15:0], CS[2:0], Col[9],
Bank[2:0], Col[8:3], CH[1:0].

To descramble the data, a look-up table 4524 size write of
all “0”’s is performed to the memory module. The scrambled
data from this write is received by the memory module and
stored in a pattern bufter. The pattern buffer (i.e. look-up table
4524) provides a 1:1 correspondence between the addresses
received during the write, and the pattern used to scramble the
data to be stored at those addresses. Thus, XORing the pattern
data stored in look-up table 4524 for a particular address with
data sent/received will scramble/unscramble the data.

FIG. 46 is a flowchart illustrating a training and initializa-
tion sequence for communication between a host processor
and memory module. One or more steps illustrated in FIG. 46
may be used to initialize one or more elements of system 100,
system 700, system 1100, system 2500, system 2501, system
2502, system 2503, module 2600, module 2601, module
2602, subsystem 2800, subsystem 2900, subsystem 2901,
system 3000, subsystem 3100, subsystem 3101, system 3200,
subsystem 3300, subsystem 3301, system 3400, subsystem
3500, subsystem 3501, system 3600, system 3900, subsystem
4000, subsystem 4001, system 4100, system 4300, system
4700, and/or look-up table 4524, and/or their components.
Standard or dedicated memory is selected (4602). For
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example, module 2551 may be configured such that memory
2571 is to act one of either CPU memory 123 or processor
memory 124. Operating system visible memory is initialized
(4604). For example, module 2551 may initialize memory
2571. Apertures are requested (4606). For example, CPU
2512, under the control of driver software, may request a
range of memory from the operating system. This range of
memory can be used to communicate with processor 2561.
Addresses are captured (4608). For example, CPU 2512,
under the control of driver software, may make accesses to the
aperture using a “walking 1°s” pattern for the address. This
pattern (or others) allows processor 2561 to determine the
physical address to aperture address translation (i.e.,
swizzle).

Scramble patterns are captured (4610). For example, CPU
2512, under the control of driver software, may perform an
aperture sized write of all “0””’s to the memory module. The
scrambled data from this write is received by the memory
module and stored in a pattern buffer. Data is captured (4612).
For example, CPU 2512, under the control of driver software,
may write data to the aperture using a “walking 1°s” pattern.
This pattern (or others) allows processor 2561 to determine
whether the DQ bits have been re-arranged (i.e., swizzled).
The de-swizzle logic is initialized (4614). The initialization is
verified (4616). The processor is initialized (4618).

FIG. 47 is a block diagram of a system with an aperture
enabled memory controller. In FIG. 47 computer system 4700
comprises CPU/memory controller subsystem 4710, /O con-
troller 4730, and memory modules 4720. CPU/memory con-
troller subsystem 4710 includes a CPU 4712 coupled to a
memory controller 4714. One or more memory modules 4720
are coupled to memory controller 4714 in subsystem 4710.
Each memory module 4720 includes a processor 4721 and
memory 4722. Memory 4722 typically contains instructions
and/or data used by the CPU 4712 and/or processor 4721.
Memory controller 4714 includes aperture address registers
4715 and scrambler 4716.

CPU 4712 can control memory controller 4714 to distrib-
ute particular processing tasks (such as graphical processing
tasks) to processors 4721, and can perform certain processing
tasks itself. These tasks may include data to be processed
and/or instructions to be executed. Although three memory
modules 4720 are shown in FIG. 47, alternate system may
contain any number of memory modules coupled to memory
controller 4714. The ability to add and remove memory mod-
ules 4720 can provide an upgradeable and scalable memory
and computing architecture. CPU 4712 may communicate
with processor 4721 by reading from, and writing to, an
address aperture associated with processor 4721. The data
sent to, and read from, modules 4720 may be scrambled by
scrambler 4716. In an embodiment, memory controller 4714
scrambles data sent to memory module 4720 using a LFSR, or
the like, in order to reduce the likelihood of “bad” data pat-
terns The LFSR may be seeded with a subset of the address
bits.

Aperture address registers 4715 may be written by CPU
4712 to define ranges of addresses on modules 4720 that will
not have scrambled data sent to (or received from) modules
4720. Pairs of register may specify start and end addresses for
aperture range. Memory controller 4714 can disable scram-
bler 4716 for the addresses in the range. Memory controller
4714 may also disable ECC checks/generation for the
addresses in the range. CPU 4512, under the control of driver
software, may program aperture address registers after
receiving address ranges for apertures to be used to commu-
nicate with modules 4720 from the operating system
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An embodiment includes method of operating a memory
module. The steps of this embodiment may be performed by
one or more elements of system 100, system 700, system
1100, system 2500, system 2501, system 2502, system 2503,
module 2600, module 2601, module 2602, subsystem 2800,
subsystem 2900, subsystem 2901, system 3000, subsystem
3100, subsystem 3101, system 3200, subsystem 3300, sub-
system 3301, system 3400, subsystem 3500, subsystem 3501,
system 3600, system 3900, subsystem 4000, subsystem 4001,
system 4100, system 4300, and/or system 4700, and/or their
components. From a memory interface and at an integrated
circuit device, a first memory command directed to a first rank
of dynamic memory disposed on a memory module is
received, the memory interface configured to interface with a
memory controller, the integrated circuit device disposed on
the memory module and including a processor. For example,
1C 2610 (which includes processor 2612 and is disposed on
module 2600) may receive, from C/A connections 2680
(which are coupled to a memory controller), a memory com-
mand directed to memory rank 2650-2658. In response to the
first memory command, and in at least one data buffer inte-
grated circuit, data from the first rank that is associated with
the first memory command is stored. For example, data read
from memory rank 2650-2658 in response to the memory
command may be stored in DQ bufters 2660-2668.

Under the control of the integrated circuit device, the data
associated with the first memory command is communicated
from the at least one data buffer to the memory interface such
that the first rank is accessible to the memory controller. For
example, IC 2610 may control DQ buffers 2660-2668 to
communicate the data read from memory rank 2650-2658 to
DQ connections 2670. Since DQ connections 2670 are also
coupled to the memory controller, communicating the data
read from memory rank 2650-2658 to DQ connections 2670
in response to the memory command allows memory rank
2650-2658 to be read accessible to the memory controller.

From the memory interface and at the integrated circuit
device, a second memory command directed to the first rank
is received. For example, IC 2610 may receive, from C/A
connections 2680, a second memory command that is
directed to memory rank 2650-2658. In response to the sec-
ond memory command, and in the at least one data buffer
integrated circuit, data received from the integrated circuit
device that is associated with the second memory command is
stored. For example, IC 2610, in response to the second
memory command, may send data which has been processed
by processor 2612 to be stored in DQ bufters 2660-2668. This
data may be sent via links 2676 A.

Under the control of the integrated circuit device, the data
associated with the second memory command is communi-
cated from the at least one data buffer to the memory interface
such that data processed by the processor is accessible to the
memory controller. For example, IC 2610 may control DQ
buffers 2660-2668 to communicate data processed by proces-
sor 2612 to DQ connections 2670. Since DQ connections
2670 are also coupled to the memory controller, communi-
cating the data received from IC 2610 to DQ connections
2670 in response to the second memory command allows the
data processed by processor 2612 to be read accessible to the
memory controller. IC 2610 may also control DQ buffers
2660-2668 to communicate, to IC 2610, the data from
memory rank 2650-2658 that was associated with the first
memory command.

An embodiment includes a method of operating a memory
module. The steps of this embodiment may be performed by
one or more elements of system 100, system 700, system
1100, system 2500, system 2501, system 2502, system 2503,
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module 2600, module 2601, module 2602, subsystem 2800,
subsystem 2900, subsystem 2901, system 3000, subsystem
3100, subsystem 3101, system 3200, subsystem 3300, sub-
system 3301, system 3400, subsystem 3500, subsystem 3501,
system 3600, system 3900, subsystem 4000, subsystem 4001,
system 4100, system 4300, and/or system 4700, and/or their
components. From a memory interface and at an integrated
circuit device, a first memory command directed to a first rank
of dynamic memory disposed on a memory module is
received, the memory interface configured to interface with a
memory controller, the integrated circuit device disposed on
the memory module and including a processor. For example,
IC 2610 (which includes processor 2612 and is disposed on
module 2600) may receive, from C/A connections 2680
(which are coupled to a memory controller), a memory com-
mand directed to memory rank 2650-2658. In response to the
first memory command, and in at least one data buffer inte-
grated circuit, data from the memory interface that is associ-
ated with the first memory command is stored. For example,
in response to the memory command, data received from DQ
connections 2670 may be stored in DQ bufters 2660-2668.

Under the control of the integrated circuit device, the data
associated with the first memory command is communicated
from the at least one data buffer to the first rank such that the
first rank is accessible to the memory controller. For example,
1C 2610 may control DQ bufters 2660-2668 to communicate
the data received from DQ connections 2670 to memory rank
2650-2658. Since DQ connections 2670 are coupled to the
memory controller, communicating the data received from
DQ connections 2670 to memory rank 2650-2658 in response
to the memory command allows memory rank 2650-2658 to
be write accessible to the memory controller.

From the memory interface and at the integrated circuit
device, a second memory command directed to the first rank
is received. For example, IC 2610 may receive, from C/A
connections 2680, a second memory command that is
directed to memory rank 2650-2658. In response to the sec-
ond memory command, and in the at least one data buffer
integrated circuit, data that is associated with the second
memory command and was received from the memory inter-
face is stored. For example, IC 2610, in response to the second
memory command, may control DQ buffers 2660-2668 to
store data received from DQ connections 2670.

Under the control of the integrated circuit device, the data
associated with the second memory command is communi-
cated from the at least one data buffer to the integrated circuit
device such that the processor can access the data associated
with the second memory command. For example, IC 2610
may control DQ buffers 2660-2668 to communicate data
received from DQ connections 2670 to IC 2610. Receiving
the data associated with the second memory command at IC
2610 allows processor 2612 to access the data from the
memory controller that is associated with the second memory
command. IC 2610 may also control DQ bufters 2660-2668
to communicate, to IC 2610, the data from that was associated
with the first memory command.

An embodiment includes a method of operating a memory
module. The steps of this embodiment may be performed by
one or more elements of system 100, system 700, system
1100, system 2500, system 2501, system 2502, system 2503,
module 2600, module 2601, module 2602, subsystem 2800,
subsystem 2900, subsystem 2901, system 3000, subsystem
3100, subsystem 3101, system 3200, subsystem 3300, sub-
system 3301, system 3400, subsystem 3500, subsystem 3501,
system 3600, system 3900, subsystem 4000, subsystem 4001,
system 4100, system 4300, and/or system 4700, and/or their
components. From a memory interface and at an integrated
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circuit device, a first memory command directed to a first rank
of dynamic memory disposed on a memory module is
received, the memory interface configured to interface with a
memory controller, the integrated circuit device disposed on
the memory module and including a processor, the memory
module including a second rank of dynamic memory. For
example, IC 2610 which includes processor 2612 and is dis-
posed on module 2601 (and module 2601 includes a first rank
of memory 2650-2658 and a second rank of memory 2640-
2648) may receive, from C/A connections 2680 (which are
coupled to a memory controller), a memory command
directed to memory rank 2650-2658. In response to the first
memory command, and in at least one data buffer integrated
circuit, data from the first rank that is associated with the first
memory command is stored. For example, data read from
memory rank 2650-2658 in response to the memory com-
mand may be stored in DQ buffers 2660-2668.

Under the control of the integrated circuit device, the data
associated with the first memory command is communicated
from the at least one data buffer to the memory interface such
that the first rank is accessible to the memory controller. For
example, IC 2610 may control DQ buffers 2660-2668 to
communicate the data read from memory rank 2650-2658 to
DQ connections 2670. Since DQ connections 2670 are also
coupled to the memory controller, communicating the data
read from memory rank 2650-2658 to DQ connections 2670
in response to the memory command allows memory rank
2650-2658 to be read accessible to the memory controller.

From the memory interface and at the integrated circuit
device, a second memory command directed to the first rank
is received. For example, IC 2610 may receive, from C/A
connections 2680, a second memory command that is
directed to memory rank 2650-2658. In response to the sec-
ond memory command, and in the at least one data buffer
integrated circuit, data received from the integrated circuit
device that is associated with the second memory command is
stored. For example, IC 2610, in response to the second
memory command, may send data which has been processed
by processor 2612 to be stored in DQ bufters 2660-2668. This
data may be sent via links 2676 A.

Under the control of the integrated circuit device, the data
associated with the second memory command is communi-
cated from the at least one data buffer to the memory interface
such that data processed by the processor is accessible to the
memory controller. For example, IC 2610 may control DQ
buffers 2660-2668 to communicate data processed by proces-
sor 2612 to DQ connections 2670. Since DQ connections
2670 are also coupled to the memory controller, communi-
cating the data received from IC 2610 to DQ connections
2670 in response to the second memory command allows the
data processed by processor 2612 to be read accessible to the
memory controller. IC 2610 may also control DQ buffers
2660-2668 to communicate, to IC 2610, the data from
memory rank 2650-2658 that was associated with the first
memory command.

A third memory command that is to retrieve data stored in
the second rank for processing by the integrated circuit is sent
to the second rank. For example, IC 2610 may send a memory
command to memory rank 2640-2648. This memory com-
mand may be to retrieved data previously stored in memory
rank 2640-2648. This memory command may be sent via
links 2682. The data retrieved may be received via links
2674B.

An embodiment includes a method of operating a memory
module. The steps of this embodiment may be performed by
one or more elements of system 100, system 700, system
1100, system 2500, system 2501, system 2502, system 2503,
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module 2600, module 2601, module 2602, subsystem 2800,
subsystem 2900, subsystem 2901, system 3000, subsystem
3100, subsystem 3101, system 3200, subsystem 3300, sub-
system 3301, system 3400, subsystem 3500, subsystem 3501,
system 3600, system 3900, subsystem 4000, subsystem 4001,
system 4100, system 4300, and/or system 4700, and/or their
components. From a memory interface and at an integrated
circuit device, a first memory command directed to a first rank
of dynamic memory disposed on a memory module is
received, the memory interface configured to interface with a
memory controller, the integrated circuit device disposed on
the memory module and including a processor. For example,
IC 2610, which includes processor 2612 and is disposed on
module 2601 (and module 2601 includes a first rank of
memory 2650-2658 and a second rank of memory 2640-
2648) may receive, from C/A connections 2680 (which are
coupled to a memory controller), a memory command
directed to memory rank 2650-2658. In response to the first
memory command, and in at least one data buffer integrated
circuit, data from the memory interface that is associated with
the first memory command is stored. For example, in
response to the memory command, data received from DQ
connections 2670 may be stored in DQ bufters 2660-2668.

Under the control of the integrated circuit device, the data
associated with the first memory command is communicated
from the at least one data buffer to the first rank such that the
first rank is accessible to the memory controller. For example,
1C 2610 may control DQ bufters 2660-2668 to communicate
the data received from DQ connections 2670 to memory rank
2650-2658. Since DQ connections 2670 are coupled to the
memory controller, communicating the data received from
DQ connections 2670 to memory rank 2650-2658 in response
to the memory command allows memory rank 2650-2658 to
be write accessible to the memory controller.

From the memory interface and at the integrated circuit
device, a second memory command directed to the first rank
is received. For example, IC 2610 may receive, from C/A
connections 2680, a second memory command that is
directed to memory rank 2650-2658. In response to the sec-
ond memory command, and in the at least one data buffer
integrated circuit, data that is associated with the second
memory command and was received from the memory inter-
face is stored. For example, IC 2610, in response to the second
memory command, may control DQ buffers 2660-2668 to
store data received from DQ connections 2670.

Under the control of the integrated circuit device, the data
associated with the second memory command is communi-
cated from the at least one data buffer to the integrated circuit
device such that the processor can access the data associated
with the second memory command. For example, IC 2610
may control DQ buffers 2660-2668 to communicate data
received from DQ connections 2670 to IC 2610. Receiving
the data associated with the second memory command at IC
2610 allows processor 2612 to access the data from the
memory controller that is associated with the second memory
command. IC 2610 may also control DQ bufters 2660-2668
to communicate, to IC 2610, the data from that was associated
with the first memory command.

A third memory command that is to store data processed by
the integrated circuit is sent to the second rank. For example,
IC 2610 may send a memory command to memory rank
2640-2648. This memory command may be to store data
processed by integrated circuit 2610 in memory rank 2640-
2648. This memory command may be sent via links 2682.
The data stored may be sent via links 2674B.

FIGS. 52 A and 52B are a flowchart illustrating a method of
operating a memory module. The steps illustrated in FIGS.
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52A and 52B may be performed by one or more elements of
system 100, system 700, system 1100, system 2500, system
2501, system 2502, system 2503, module 2600, module
2601, module 2602, subsystem 2800, subsystem 2900, sub-
system 2901, system 3000, subsystem 3100, subsystem 3101,
system 3200, subsystem 3300, subsystem 3301, system 3400,
subsystem 3500, subsystem 3501, system 3600, system 3900,
subsystem 4000, subsystem 4001, system 4100, system 4300,
and/or system 4700, and/or their components. From a
memory interface and at an integrated circuit device, a first
memory command directed to a first rank of dynamic
memory disposed on a memory module is received, the
memory interface configured to interface with a memory
controller, the integrated circuit device disposed on the
memory module and including a processor, the memory mod-
ule including a second rank of dynamic memory. For
example, IC 2610 which includes processor 2612 and is dis-
posed on module 2602 (and module 2602 includes a first rank
of memory 2650-2658 and a second rank of memory 2640-
2648) may receive, from C/A connections 2680 (which are
coupled to a memory controller), a memory command
directed to memory rank 2650-2658. In response to the first
memory command, and in at least one data buffer integrated
circuit, data from the first rank that is associated with the first
memory command is stored. For example, data read from
memory rank 2650-2658 in response to the memory com-
mand may be stored in DQ buffers 2660-2668.

Under the control of the integrated circuit device, the data
associated with the first memory command is communicated
from the at least one data buffer to the memory interface such
that the first rank is accessible to the memory controller. For
example, IC 2610 may control DQ buffers 2660-2668 to
communicate the data read from memory rank 2650-2658 to
DQ connections 2670. Since DQ connections 2670 are also
coupled to the memory controller, communicating the data
read from memory rank 2650-2658 to DQ connections 2670
in response to the memory command allows memory rank
2650-2658 to be read accessible to the memory controller.

From the memory interface and at the integrated circuit
device, a second memory command directed to the first rank
is received. For example, IC 2610 may receive, from C/A
connections 2680, a second memory command that is
directed to memory rank 2650-2658. In response to the sec-
ond memory command, and in the at least one data buffer
integrated circuit, data received from the integrated circuit
device that is associated with the second memory command is
stored. For example, IC 2610, in response to the second
memory command, may send data which has been processed
by processor 2612 to be stored in DQ bufters 2660-2668. This
data may be sent via links 2676C.

Under the control of the integrated circuit device, the data
associated with the second memory command is communi-
cated from the at least one data buffer to the memory interface
such that data processed by the processor is accessible to the
memory controller. For example, IC 2610 may control DQ
buffers 2660-2668 to communicate data processed by proces-
sor 2612 to DQ connections 2670. Since DQ connections
2670 are also coupled to the memory controller, communi-
cating the data received from IC 2610 to DQ connections
2670 in response to the second memory command allows the
data processed by processor 2612 to be read accessible to the
memory controller. IC 2610 may also control DQ buffers
2660-2668 to communicate, to IC 2610, the data from
memory rank 2650-2658 that was associated with the first
memory command.

By the integrated circuit device, a third memory command
that is to retrieve data stored in the second rank is sent to the
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second rank. For example, IC 2610 may send a memory
command to memory rank 2640-2648. This memory com-
mand may be to retrieved data previously stored in memory
rank 2640-2648. This memory command may be sent via
links 2682. In response to the third memory command, and in
atleast one data buffer integrated circuit, data from the second
rank that is associated with the third memory command is
stored. For example, data read from memory rank 2640-2648
in response to the third memory command may be stored in
DQ buffers 2660-2668.

Under the control of the integrated circuit device, the data
associated with the third memory command is communicated
from the at least one data buffer to the memory interface such
that the second rank is accessible to the memory controller.
For example, IC 2610 may control DQ buffers 2660-2668 to
communicate the data read from memory rank 2640-2648 to
DQ connections 2670. Since DQ connections 2670 are also
coupled to the memory controller, communicating the data
read from memory rank 2640-2648 to DQ connections 2670
in response to the memory command allows memory rank
2640-2648 to be read accessible to the memory controller.

By the integrated circuit device, a fourth memory com-
mand that is to retrieve data stored in the second rank is sent
to the second rank. For example, IC 2610 may send a memory
command to memory rank 2640-2648. This memory com-
mand may be to retrieved data previously stored in memory
rank 2640-2648. This memory command may be sent via
links 2682. In response to the fourth memory command, and
in at least one data buffer integrated circuit, data from the
second rank that is associated with the fourth memory com-
mand is stored. For example, data read from memory rank
2640-2648 in response to the fourth memory command may
be stored in DQ buffers 2660-2668.

Under the control of the integrated circuit device, the data
associated with the fourth memory command is communi-
cated from the at least one data buffer to the integrated circuit
device such that the second rank is accessible to integrated
circuit device. For example, IC 2610 may control DQ buffers
2660-2668 to communicate the data read from memory rank
2640-2648 to 1C 2610. DQ buffers 2660-2668 may commu-
nicate the data read in response to the fourth memory com-
mand via links 2676C.

An embodiment includes a method of operating a memory
module. The steps of this embodiment may be performed by
one or more elements of system 100, system 700, system
1100, system 2500, system 2501, system 2502, system 2503,
module 2600, module 2601, module 2602, subsystem 2800,
subsystem 2900, subsystem 2901, system 3000, subsystem
3100, subsystem 3101, system 3200, subsystem 3300, sub-
system 3301, system 3400, subsystem 3500, subsystem 3501,
system 3600, system 3900, subsystem 4000, subsystem 4001,
system 4100, system 4300, and/or system 4700, and/or their
components. From a memory interface and at an integrated
circuit device, a first memory command directed to a first rank
of dynamic memory disposed on a memory module is
received, the memory interface configured to interface with a
memory controller, the integrated circuit device disposed on
the memory module and including a processor. For example,
IC 2610, which includes processor 2612 and is disposed on
module 2601 (and module 2601 includes a first rank of
memory 2650-2658 and a second rank of memory 2640-
2648) may receive, from C/A connections 2680 (which are
coupled to a memory controller), a memory command
directed to memory rank 2650-2658. In response to the first
memory command, and in at least one data buffer integrated
circuit, data from the memory interface that is associated with
the first memory command is stored. For example, in
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response to the memory command, data received from DQ
connections 2670 may be stored in DQ bufters 2660-2668.

Under the control of the integrated circuit device, the data
associated with the first memory command is communicated
from the at least one data buffer to the first rank such that the
first rank is accessible to the memory controller. For example,
1C 2610 may control DQ bufters 2660-2668 to communicate
the data received from DQ connections 2670 to memory rank
2650-2658. Since DQ connections 2670 are coupled to the
memory controller, communicating the data received from
DQ connections 2670 to memory rank 2650-2658 in response
to the memory command allows memory rank 2650-2658 to
be write accessible to the memory controller.

From the memory interface and at the integrated circuit
device, a second memory command directed to the first rank
is received. For example, IC 2610 may receive, from C/A
connections 2680, a second memory command that is
directed to memory rank 2650-2658. In response to the sec-
ond memory command, and in the at least one data buffer
integrated circuit, data that is associated with the second
memory command and was received from the memory inter-
face is stored. For example, IC 2610, in response to the second
memory command, may control DQ buffers 2660-2668 to
store data received from DQ connections 2670.

Under the control of the integrated circuit device, the data
associated with the second memory command is communi-
cated from the at least one data buffer to the integrated circuit
device such that the processor can access the data associated
with the second memory command. For example, IC 2610
may control DQ buffers 2660-2668 to communicate data
received from DQ connections 2670 to IC 2610. Receiving
the data associated with the second memory command at IC
2610 allows processor 2612 to access the data from the
memory controller that is associated with the second memory
command. IC 2610 may also control DQ bufters 2660-2668
to communicate, to IC 2610, the data from that was associated
with the first memory command.

By the integrated circuit, a third memory command that is
to store data in the second rank is sent to the second rank. For
example, IC 2610 may send a memory command to memory
rank 2640-2648. This memory command may be to store data
processed by integrated circuit 2610 in memory rank 2640-
2648. This memory command may be sent via links 2682.

In correspondence to the third memory command, and in at
least one data buffer integrated circuit, data received from the
integrated circuit device that is associated with the third
memory command is stored. For example, data associated
with the third memory command may be received by DQ
buffers 2660-2668 from IC 2610 and stored. The data asso-
ciated with the third memory command may be received by
DQ buffers 2660-2668 via links 2676C.

Under the control of the integrated circuit device, the data
associated with the third memory command is communicated
from the at least one data buffer to the second rank such that
the second rank is accessible to the memory controller. For
example, IC 2610 may control DQ buffers 2660-2668 to
communicate the data received from IC 2610 to memory rank
2640-2648. This allows memory rank 2640-2648 to be write
accessible to IC 2610.

By the integrated circuit, a fourth memory command that is
to store data in the second rank is sent to the second rank. For
example, in response to a memory command received from a
memory controller, IC 2610 may send a memory command to
memory rank 2640-2648. This memory command may be to
store data from the memory controller in memory rank 2640-
2648. This memory command may be sent via links 2682.
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In correspondence to the fourth memory command, and in
at least one data buffer integrated circuit, data received from
the memory interface that is associated with the fourth
memory command is stored. For example, data associated
with the fourth memory command may be received by DQ
buffers 2660-2668 from DQ connections 2670 and stored.

Under the control of the integrated circuit device, the data
associated with the fourth memory command is communi-
cated from the at least one data buffer to the second rank such
that the second rank is accessible to the memory controller.
For example, IC 2610 may control DQ buffers 2660-2668 to
communicate the data received DQ connections 2670 to
memory rank 2640-2648. This allows memory rank 2640-
2648 to be write accessible to the memory controller.

An embodiment includes a method of operating a memory
module. The steps of this embodiment may be performed by
one or more elements of system 100, system 700, system
1100, system 2500, system 2501, system 2502, system 2503,
module 2600, module 2601, module 2602, subsystem 2800,
subsystem 2900, subsystem 2901, system 3000, subsystem
3100, subsystem 3101, system 3200, subsystem 3300, sub-
system 3301, system 3400, subsystem 3500, subsystem 3501,
system 3600, system 3900, subsystem 4000, subsystem 4001,
system 4100, system 4300, and/or system 4700, and/or their
components. Data from at least one open page of a plurality of
dynamic memory integrated circuits is cached into at least
one open page of at least one dynamic memory integrated
circuit during an idle period of the plurality of dynamic
memory integrated circuits. For example, system 2900 using
memory/cache controller 2918 may cache open pages from
memories connected to CA, interface 2987 using local
memory 2924. Memory/cache controller 2918 may copy data
to/from the memories connected to CA interface 2987 dur-
ing idle periods of the memories connected to CA, interface
2987.

A request for data stored in the plurality of dynamic
memory integrated circuits having a first access latency and a
first access information rate is received. For example, system
2900 may receive, from processor 2912, a request for data
stored at an address that corresponds to memories connected
to CA| interface 2987. The memories connected to CA inter-
face 2987 can be accessed by system 2900 at a given, imple-
mentation dependent and typically fixed, access latency and
access information rate.

It is determined that the request for data can be satisfied
using cached data stored in the at least one dynamic memory
integrated circuit, the at least one dynamic memory integrated
circuit having a second information rate, the first access
latency and the second access latency being approximately
equal, the first access information rate being substantially less
than the second access information rate. For example,
memory/cache controller 2918 may determine that a request
for data at an address that corresponds to memories connected
to CA, interface 2987 can be satisfied using cached data
stored in local memory 2924 (and in cache memory partition
2925, in particular). Local memory 2924 can be accessed by
system 2900 at a given, implementation dependent and typi-
cally fixed, access latency and access information rate. The
access latency of local memory 2924 may be approximately
equal to the access latency of the memories connected to CA,
interface 2987. However, the information rate (i.e., band-
width) of local memory 2924 may be substantially greater
than the information rate of the memories connected to CA;
interface 2987. For example, if local memory 2924 is
accessed via 4 XDR memory channels and the memories
connected to CA, interface 2987 constitute a single DDR3
memory channel, local memory 2924 may be accessed with
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4-6 times (a.k.a., 4x to 6x) the bandwidth as the memories
connected to CA, interface 2987.

An embodiment includes a method of operating a memory
module. The steps of this embodiment may be performed by
one or more elements of system 100, system 700, system
1100, system 2500, system 2501, system 2502, system 2503,
module 2600, module 2601, module 2602, subsystem 2800,
subsystem 2900, subsystem 2901, system 3000, subsystem
3100, subsystem 3101, system 3200, subsystem 3300, sub-
system 3301, system 3400, subsystem 3500, subsystem 3501,
system 3600, system 3900, subsystem 4000, subsystem 4001,
system 4100, system 4300, and/or system 4700, and/or their
components. At an integrated circuit device, a memory com-
mand from a memory controller connected to a memory
interface of a memory module is received; the integrated
circuit device has a processor, a first interface, a second inter-
face, and a third interface. The first interface is connected to a
plurality of dynamic memory integrated circuits. The second
interface is connected to at least one nonvolatile memory
integrated circuit device. The third interface received the
memory command from the memory controller. For example,
integrated circuit device 3021 may receive from memory
controller 3014 (which is coupled to a memory interface of
module 3020) a memory command. Integrated circuit device
3021 may be, for example, system 3100. System 3100 has
CA, interface 3186 and CA, interface 3187 that may be con-
nected to CPU memory 3023. System 3100 has NV controller
3127 (which can correspond to NV controller 3025) to inter-
face to NV memory 3128 (which can correspond to NV
memory 3028). System 3100 has CA input interface 3196
which can receive the memory command from memory con-
troller 3014.

In response to the memory command, data is stored in the
plurality of dynamic memory integrated circuits. For
example, in response to a command received via CA input
interface 3196 from memory controller 3014, system 3100
may store data in dynamic memory integrated circuits con-
nected to CA, interface 3186 or CA, interface 3187 (e.g.,
CPU memory 3023).

Inresponseto acommand from the processor, data is stored
in at least one nonvolatile memory integrated circuit device.
For example, system 3100 may store, in response to processor
3112 (or processor 3022) and in NV memory 3128, data
stored in CPU memory 3023, local memory 3124, and/or
dynamic memory connected to CA, interface 3186 and CA,
interface 3187.

An embodiment includes a method of operating a memory
module. The steps of this embodiment may be performed by
one or more elements of system 100, system 700, system
1100, system 2500, system 2501, system 2502, system 2503,
module 2600, module 2601, module 2602, subsystem 2800,
subsystem 2900, subsystem 2901, system 3000, subsystem
3100, subsystem 3101, system 3200, subsystem 3300, sub-
system 3301, system 3400, subsystem 3500, subsystem 3501,
system 3600, system 3900, subsystem 4000, subsystem 4001,
system 4100, system 4300, and/or system 4700, and/or their
components. At an integrated circuit device, a memory com-
mand from a memory controller connected to a memory
interface of a memory module is received; the integrated
circuit device has a processor, a first interface, a second inter-
face, and a third interface. The first interface is connected to a
plurality of dynamic memory integrated circuits. The second
interface is connected to at least one disk type mass storage
device. The third interface received the memory command
from the memory controller. For example, integrated circuit
device 3221 may receive from memory controller 3214
(which is coupled to a memory interface of module 3220) a
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memory command. Integrated circuit device 3221 may be, for
example, system 3300. System 3300 has CA,, interface 3386
and CA, interface 3387 that may be connected to CPU
memory 3223. System 3300 has disk interface 3327 (which
can correspond to disk interface 3225) to interface to disk
type storage 3328 (which can correspond to disk type storage
3228). System 3300 has CA input interface 3396 which can
receive the memory command from memory controller 3214.

In response to the memory command, data is stored in the
plurality of dynamic memory integrated circuits. For
example, in response to a command received via CA input
interface 3396 from memory controller 3214, system 3300
may store data in dynamic memory integrated circuits con-
nected to CA, interface 3386 or CA, interface 3387 (e.g.,
CPU memory 3223).

Inresponse to acommand from the processor, data is stored
in at least one disk type mass storage device. For example,
system 3300 may store, in response to processor 3312 (or
processor 3322) and in disk type storage 3328, data stored in
CPU memory 3223, local memory 3324, and/or dynamic
memory connected to CA, interface 3386 and CA, interface
3387.

An embodiment includes a method of operating a memory
module. The steps of this embodiment may be performed by
one or more elements of system 100, system 700, system
1100, system 2500, system 2501, system 2502, system 2503,
module 2600, module 2601, module 2602, subsystem 2800,
subsystem 2900, subsystem 2901, system 3000, subsystem
3100, subsystem 3101, system 3200, subsystem 3300, sub-
system 3301, system 3400, subsystem 3500, subsystem 3501,
system 3600, system 3900, subsystem 4000, subsystem 4001,
system 4100, system 4300, and/or system 4700, and/or their
components. At an integrated circuit device, a memory com-
mand from a memory controller connected to a memory
interface of a memory module is received; the integrated
circuit device has a solid-state disk controller circuit, a first
interface, a second interface, and a third interface. The first
interface is connected to a plurality of dynamic memory
integrated circuits. The second interface is connected to at
least one nonvolatile memory integrated circuit device. The
third interface received the memory command from the
memory controller. For example, integrated circuit device
3021 may receive from memory controller 3014 (which is
coupled to a memory interface of module 3020) a memory
command. Integrated circuit device 3021 may be, for
example, system 3100. System 3100 has CA,, interface 3186
and CA, interface 3187 that may be connected to CPU
memory 3023. System 3100 has NV controller 3127 (which
may be a solid-state disk controller circuit and can correspond
to NV controller 3025) to interface to NV memory 3128
(which can correspond to NV memory 3028). System 3100
has CA input interface 3196 which can receive the memory
command from memory controller 3014.

In response to the memory command, data is stored in the
plurality of dynamic memory integrated circuits. For
example, in response to a command received via CA input
interface 3196 from memory controller 3014, system 3100
may store data in dynamic memory integrated circuits con-
nected to CA, interface 3186 or CA, interface 3187 (e.g.,
CPU memory 3023).

In response to a command from the solid-state disk con-
troller circuit, data is stored in at least one nonvolatile
memory integrated circuit device. For example, system 3100
may store, in NV memory 3128, and in response to a solid-
state disk controller circuit that is, or is included in, NV
controller 3127, data stored in CPU memory 3023, local
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memory 3124, and/or dynamic memory connected to CA,
interface 3186 and CA | interface 3187.

An embodiment includes a method of operating a memory
module. The steps of this embodiment may be performed by
one or more elements of system 100, system 700, system
1100, system 2500, system 2501, system 2502, system 2503,
module 2600, module 2601, module 2602, subsystem 2800,
subsystem 2900, subsystem 2901, system 3000, subsystem
3100, subsystem 3101, system 3200, subsystem 3300, sub-
system 3301, system 3400, subsystem 3500, subsystem 3501,
system 3600, system 3900, subsystem 4000, subsystem 4001,
system 4100, system 4300, and/or system 4700, and/or their
components. At an integrated circuit device, a memory com-
mand from a memory controller connected to a memory
interface of a memory module is received; the integrated
circuit device has a processor, a first interface, a second inter-
face, and a nonvolatile memory. The first interface is con-
nected to a plurality of dynamic memory integrated circuits.
The second interface received the memory command from
the memory controller. For example, integrated circuit device
3421 may receive from memory controller 3414 (which is
coupled to a memory interface of module 3420) a memory
command. Integrated circuit device 3421 may be, for
example, system 3500. System 3500 has CA,, interface 3586
and CA, interface 3587 that may be connected to CPU
memory 3423. System 3500 has NV memory 3528 (which
can correspond to NV memory 3428). System 3500 has CA
input interface 3596 which can receive the memory command
from memory controller 3414.

In response to the memory command, data is stored in the
plurality of dynamic memory integrated circuits. For
example, in response to a command received via CA input
interface 3596 from memory controller 3414, system 3500
may store data in dynamic memory integrated circuits con-
nected to CA, interface 3586 or CA, interface 3587 (e.g.,
CPU memory 3023).

Inresponseto acommand from the processor, data is stored
in at least one nonvolatile memory integrated circuit device.
For example, system 3500 may store, in response to processor
3512 (or processor 3422) and in NV memory 3528, data
stored in CPU memory 3423, local memory 3524, and/or
dynamic memory connected to CA, interface 3586 and CA,
interface 3587.

An embodiment includes a method of operating a memory
module. The steps of this embodiment may be performed by
one or more elements of system 100, system 700, system
1100, system 2500, system 2501, system 2502, system 2503,
module 2600, module 2601, module 2602, subsystem 2800,
subsystem 2900, subsystem 2901, system 3000, subsystem
3100, subsystem 3101, system 3200, subsystem 3300, sub-
system 3301, system 3400, subsystem 3500, subsystem 3501,
system 3600, system 3900, subsystem 4000, subsystem 4001,
system 4100, system 4300, and/or system 4700, and/or their
components. At an integrated circuit device, a first memory
write command is received from a memory controller con-
nected to a memory interface of the memory module; the
memory interface including a rank select signal; the first
memory write command having the rank select signal deas-
serted; the first memory write command having an address
within a configured address aperture; the integrated circuit
device having a processor, a first interface and a second inter-
face; the first interface connected to a plurality of dynamic
memory integrate circuits; the second interface receiving the
memory write command from the memory controller. For
example, a module 3920 may include system 4000 that
receives from memory controller 3914 connected to a
memory interface of the module 3920, a write command. The
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memory interface of the module includes rank select #1 3961
(e.g., chip select-CS). The memory write command received
from memory controller 3914 may have rank select #1 3961
deasserted. The memory write command received from
memory controller 3914 may also have an address within an
address range configured as a broadcast aperture. System 400
has CA,, interface 3586 and CA, interface 3587 that may be
connected to memory 3922 and a processor 4012.

In response to the first memory write command, data is
stored in the plurality of dynamic memory integrated circuits.
For example, in response to the memory write command
received from memory controller 3914 with rank select #1
3961 deasserted, system 4000 stores data associated with that
write command. System 4000 may store data associated with
that write command to memory 3922, local memory 4024, or
another location (e.g., inside processor 4012).

An embodiment includes a method of operating a plurality
of memory modules. The steps of this embodiment may be
performed by one or more elements of system 100, system
700, system 1100, system 2500, system 2501, system 2502,
system 2503, module 2600, module 2601, module 2602, sub-
system 2800, subsystem 2900, subsystem 2901, system 3000,
subsystem 3100, subsystem 3101, system 3200, subsystem
3300, subsystem 3301, system 3400, subsystem 3500, sub-
system 3501, system 3600, system 3900, subsystem 4000,
subsystem 4001, system 4100, system 4300, and/or system
4700, and/or their components. Via a first channel and at a first
integrated circuit device disposed on a first memory module,
afirst memory write command having a first rank select signal
deasserted is received. For example, a system 4000 disposed
on memory module 3920 may receive from memory control-
ler 3914 a memory write command having rank select signal
#1 3961 deasserted.

Inresponse to the first memory write command, first graph-
ics data is stored in a first plurality of dynamic memory
integrated circuits that can be selected by asserting the first
rank select signal. For example, system 4000 (and more par-
ticularly broadcast bridge 4027) disposed on memory module
3920 may store graphics data in dynamic memory integrated
circuits coupled CA, interface 4087 even though rank select
signal #1 3961 received as part of the memory write com-
mand is deasserted. The dynamic memory integrated circuits
coupled CA, interface 4087 can be selected by asserting rank
select signal #1 3961. System 4000 disposed on memory
module 3920 may store the graphics data in dynamic memory
integrated circuits coupled CA; interface 4087 even though
rank select signal #1 3961 is deasserted because the memory
write command is directed to a range of addresses configured
as a broadcast aperture.

Via the first channel and at a second integrated circuit
device disposed on a second memory module, the first
memory write command having a second rank select signal
asserted is received. For example, a system 4000 disposed on
memory module 3930 may receive from memory controller
3914 the memory write command having rank select signal
#2 3962 asserted.

In response to the first memory write command, the first
graphics data is stored in a second plurality of dynamic
memory integrated circuits that are selected by asserting the
second rank select signal. For example, system 4000 (and
more particularly broadcast bridge 4027) disposed on
memory module 3930 may store graphics data in dynamic
memory integrated circuits coupled CA; interface 4087 of
system 4000 disposed on memory module 3930 based on
rank select signal #2 3962 being asserted.

The first integrated circuit device is configured to render a
first portion of a frame. For example, CPU 3912 may config-
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ure processor 3921 to render a first portion of a frame based
on the graphics data in dynamic memory integrated circuits
coupled CA, interface 4087 of system 4000 that is disposed
on module 3920.

The second integrated circuit device is configured to render
a second portion of a frame. For example, CPU 3912 may
configure processor 3931 to render a second portion of a
frame based on the graphics data in dynamic memory inte-
grated circuits coupled CA, interface 4087 of system 4000
that is disposed on module 3930.

An embodiment includes a method of operating a plurality
of memory modules. The steps of this embodiment may be
performed by one or more elements of system 100, system
700, system 1100, system 2500, system 2501, system 2502,
system 2503, module 2600, module 2601, module 2602, sub-
system 2800, subsystem 2900, subsystem 2901, system 3000,
subsystem 3100, subsystem 3101, system 3200, subsystem
3300, subsystem 3301, system 3400, subsystem 3500, sub-
system 3501, system 3600, system 3900, subsystem 4000,
subsystem 4001, system 4100, system 4300, and/or system
4700, and/or their components. A scene of graphics data is
sent to a first plurality of memory modules; the first plurality
of memory modules each including at least one of a first
plurality of graphics processors; each of the first plurality of
memory modules coupled to a first memory channel. For
example, CPU 4310 may send a scene of graphics data to
module 4320, module 4330, and 4340. CPU 4310 may send
the scene of graphics data to graphics data to module 4320,
module 4330, and 4340 using a write to a broadcast aperture
associated with memory channel #1 4381. Module 4320,
module 4330, and 4340 each have at least one processor 4325,
4335, and 4345, respectively.

The scene of graphics data is sent to a second plurality of
memory modules; the second plurality of memory modules
each including at least one of a second plurality of graphics
processors; each of the second plurality of memory modules
coupled to a second memory channel. For example, CPU
4310 may send a scene of graphics data to module 4350,
module 4360, and 4370. CPU 4310 may send the scene of
graphics data to graphics data to module 4350, module 4360,
and 4370 using a write to a broadcast aperture associated with
memory channel #2 4382. Module 4350, module 4360, and
4370 each have at least one processor 4355, 4365, and 4375,
respectively.

The first plurality of graphics processor are configured to
process a first frame of graphics data; the first frame to be
rendered being based on the scene of graphics data. For
example, at least one of processors 4355, 4365, and 4375 may
be configured to render a first frame of graphics data that is
based on the scene of graphics data. The second plurality of
graphics processor are configured to process a second frame
of graphics data; the second frame to be rendered being based
on the scene of graphics data. For example, at least one of
processors 4355, 4365, and 4375 may be configured to render
a second frame of graphics data that is based on the scene of
graphics data.

The foregoing discussions included various memory and
nonvolatile memory elements. A variety of resistive state
memory devices can be used as implementations of these
memory and non-volatile memory elements (i.e., memory
elements that retain stored data in an absence of electrical
power). Examples of non-volatile memory include but are not
limited to MRAM devices (including spin torque MRAM
devices) and resistive random access memory (RRAM)
devices.

RRAM devices are configured to change resistive states in
response to data operations performed on the RRAM device
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(e.g., a two-terminal memory element or memory cell),
whether by application of write voltages or write currents.
Write signals (e.g., write voltages or write currents) may be
applied as pulses (e.g., uni-polar or bi-polar pulses) having
pulse widths, magnitudes, shapes, and durations configured
to change a resistive state of the memory element. Example
RRAM technologies include phase change memory (PCM)
devices, conductive bridge (CBRAM) memory devices,
MEMRISTOR memory devices, memristive memory
devices, filamentary RRAM devices, interfacial RRAM
devices, RRAM devices that require a forming step, memory
devices that utilize mobile metal ion transport and/or motion
to change resistive states, non-MRAM memory devices that
utilize at least one tunnel oxide layer or at least one tunnel
barrier layer (e.g., at least one tunneling layer) in conjunction
with at least one other layer of material (e.g., an ion reservoir)
that is in contact with or is electrically in series with the
tunneling layer, memory devices that utilize mobile ions (e.g.,
oxygen ions), memory devices for which current flow
through the device is a non-linear function of a voltage
applied across terminals of the device (i.e., a non-linear [-V
characteristic), memory devices for which a resistance of the
device is a non-linear function of a voltage applied across
terminals of the device, just to name a few.

RRAM devices can be single level cells (SL.C) that store
only one-bit of data or can be multi-level cells (MLC) that
store at least two-bits of data. Typical RRAM devices are read
by applying a read signal, such as a read voltage across
terminals of the device and sensing a signal (e.g., a read
current) whose magnitude is indicative of a value of data
stored in the RRAM device (e.g., logic “0” or “1” for SLC, or
logic “00”, 017,107, or “11” for ML.C). The read signal can
be applied as a voltage pulse similar to that described above
for the write signal.

In some configurations, a RRAM cell may include an
optional selection device such as a non-ohmic device, a
metal-insulator-metal (MIM) device, one or more transistors
(FET or BIT), or one or more diodes (e.g., PIN, P/N, Zener,
Schottky, etc). Example of RRAM memory cells having
selection devices include but are not limited to 1T-1R, 2T-1R,
1D-1R, and 2D-1R, where T=Transistor, D=Diode, and
R=Resistive Change Memory Element. The selection device
can be configured to block or substantially attenuate current
flow through a RRAM cell for voltages other than data opera-
tion voltages that are electrically coupled with the cell. There-
fore, when a RRAM cell is not selected for a data operation
(e.g., read or write), zero or substantially no current flows
through the cell. Half-selected or un-selected RRAM cells in
an array configuration are one example of cells that are not
selected for a data operation. Use of a selection device can
reduce leakage currents and/or other stray currents that could
interfere with or reduce a signal-to-noise-ratio (S/N) associ-
ated with a signal from RRAM cell(s) that are selected for a
data operation (e.g., a read signal from a selected cell). For
sensing circuitry (e.g., sense amps) a high S/N is desirable in
order to accurately sense a read signal in the presence of noise
generated during the read operation by cells that are not being
read. Further, use of a selection device can reduce power
consumption and waste heat dissipation due to the aforemen-
tioned leakage currents and/or other stray currents. The selec-
tion device is optional and its use is application dependent.
Moreover, RRAM devices having a non-linear -V character-
istic may be implemented without a selection device.

RRAM devices can be configured in an orderly structure
such as a cross-point array or a two-terminal cross-point
array, and in some implementations, the array can be mono-
lithically fabricated (e.g., back-end-of-the-line (BEOL))
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directly above circuitry (e.g., CMOS circuitry) on a semicon-
ductor die (e.g., asilicon die on a wafer), such that all circuitry
for accessing and performing data operations (e.g., read,
write, program, erase, restore, wear leveling, etc.) and option-
ally other circuitry such as memory controllers, processors,
ALU’s, CPU’s, DSP’s, etc., are first fabricated front-end-of-
the-line (FEOL) on a semiconductor substrate (e.g., a silicon
die). The RRAM devices are subsequently vertically fabri-
cated BEOL directly above the FEOL portion such that the
FEOL and BEOL portions form a die that is a unitary whole
comprised of monolithically integrated and inseparable cir-
cuitry (FEOL) and memory (BEOL) structures. The BEOL
portion can include multiple memory layers or planes with
each layer or plane including one or more arrays.

The systems and devices described above may be imple-
mented in computer systems, integrated circuits, or stored by
computer systems. The systems described above may also be
stored on a non-transitory computer readable medium.
Devices, circuits, and systems described herein may be
implemented using computer-aided design tools available in
the art, and embodied by computer-readable files containing
software descriptions of such circuits. This includes, but is
not limited to one or more elements of system 100, system
700, system 1100, system 2500, system 2501, system 2502,
system 2503, module 2600, module 2601, module 2602, sub-
system 2800, subsystem 2900, subsystem 2901, system 3000,
subsystem 3100, subsystem 3101, system 3200, subsystem
3300, subsystem 3301, system 3400, subsystem 3500, sub-
system 3501, system 3600, system 3900, subsystem 4000,
subsystem 4001, system 4100, system 4300, and/or system
4700, and their components. These software descriptions
may be: algorithmic, behavioral, register transfer, logic com-
ponent, transistor, and layout geometry-level descriptions.
Moreover, the software descriptions may be stored on non-
transitory storage media or communicated by carrier waves.

Data formats in which such descriptions may be imple-
mented include, but are not limited to: formats supporting
behavioral languages like C, formats supporting register
transfer level (RTL) languages like Verilog and VHDL, for-
mats supporting geometry description languages (such as
GDSII, GDSIII, GDSIV, CIF, and MEBES), and other suit-
able formats and languages. Moreover, data transfers of such
files on machine-readable media may be done electronically
over the diverse media on the Internet or, for example, via
email. Note that physical files may be implemented on
machine-readable media such as: 4 mm magnetic tape, 8§ mm
magnetic tape, 32 inch floppy media, CDs, DVDs, Blu-Ray,
and so on.

FIG. 48 illustrates a block diagram of a computer system.
Computer system 4800 includes communication interface
4820, processing system 4830, storage system 4840, and user
interface 4860. Processing system 4830 is operatively
coupled to storage system 4840. Storage system 4840 stores
software 4850 and data 4870. Computer system 4800 may
include one or more elements of system 100, system 700,
system 1100, system 2500, system 2501, system 2502, sys-
tem 2503, module 2600, module 2601, module 2602, sub-
system 2800, subsystem 2900, subsystem 2901, system 3000,
subsystem 3100, subsystem 3101, system 3200, subsystem
3300, subsystem 3301, system 3400, subsystem 3500, sub-
system 3501, system 3600, system 3900, subsystem 4000,
subsystem 4001, system 4100, system 4300, and/or system
4700, and their components that implement the methods,
circuits, subsystems, and/or systems described herein. Pro-
cessing system 4830 is operatively coupled to communica-
tion interface 4820 and user interface 4860. Computer system
4800 may comprise a programmed general-purpose com-
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puter. Computer system 4800 may include a microprocessor.
Computer system 4800 may comprise programmable or spe-
cial purpose circuitry. Computer system 4800 may be distrib-
uted among multiple devices, processors, storage, and/or
interfaces that together comprise elements 4820-4870.

Communication interface 4820 may comprise a network
interface, modem, port, bus, link, transceiver, or other com-
munication device. Communication interface 4820 may be
distributed among multiple communication devices. Process-
ing system 4830 may comprise a microprocessor, microcon-
troller, logic circuit, or other processing device. Processing
system 4830 may be distributed among multiple processing
devices. User interface 4860 may comprise a keyboard,
mouse, voice recognition interface, microphone and speak-
ers, graphical display, touch screen, or other type of user
interface device. User interface 4860 may be distributed
among multiple interface devices. Storage system 4840 may
comprise a disk, tape, integrated circuit, RAM, ROM,
EEPROM, flash memory, network storage, server, or other
memory function. Storage system 4840 may include com-
puter readable medium. Storage system 4840 may be distrib-
uted among multiple memory devices.

Processing system 4830 retrieves and executes software
4850 from storage system 4840. Processing system 4830 may
retrieve and store data 4870. Processing system 4830 may
also retrieve and store data via communication interface
4820. Processing system 4830 may create or modify software
4850 or data 4870 to achieve a tangible result. Processing
system 4830 may control communication interface 4820 or
user interface 4860 to achieve a tangible result. Processing
system 4830 may retrieve and execute remotely stored soft-
ware via communication interface 4820.

Software 4850 and remotely stored software may comprise
an operating system, utilities, drivers, networking software,
and other software typically executed by a computer system.
Software 4850 may comprise an application program, applet,
firmware, or other form of machine-readable processing
instructions typically executed by a computer system. When
executed by processing system 4830, software 4850 or
remotely stored software may direct computer system 4800 to
operate.

In the foregoing description and in the accompanying
drawings, specific terminology and drawing symbols are set
forth to provide a thorough understanding of the present
invention. In some instances, the terminology and symbols
may imply specific details that are not required to practice the
invention. For example, the interconnection between circuit
elements or circuit blocks may be shown or described as
multi-conductor or single conductor signal lines. Each of the
multi-conductor signal lines may alternatively be single-con-
ductor signal lines, and each of the single-conductor signal
lines may alternatively be multi-conductor signal lines. Sig-
nals and signaling paths shown or described as being single-
ended may also be differential, and vice-versa. Moreover, the
foregoing descriptions focus primarily on read access, but
these embodiments likewise support write access, as will be
well understood by those of skill in the art.

An output of a process for designing an integrated circuit,
or a portion of an integrated circuit, comprising one or more
of the circuits described herein may be a computer-readable
medium such as, for example, a magnetic tape or an optical or
magnetic disk. The computer-readable medium may be
encoded with data structures or other information describing
circuitry that may be physically instantiated as an integrated
circuit or portion of an integrated circuit. Although various
formats may be used for such encoding, these data structures
are commonly written in Caltech Intermediate Format (CIF),
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Calma GDS II Stream Format (GDSII), or Electronic Design
Interchange Format (EDIF). Those of skill in the art of inte-
grated circuit design can develop such data structures from
schematic diagrams of the type detailed above and the corre-
sponding descriptions and encode the data structures on com-
puter readable medium. Those of skill in the art of integrated
circuit fabrication can use such encoded data to fabricate
integrated circuits comprising one or more of the circuits
described herein.

While the present invention has been described in connec-
tion with specific embodiments, after reading this disclosure
variations of these embodiments will be apparent to those of
ordinary skill in the art. Moreover, some components are
shown directly connected to one another while others are
shown connected via intermediate components. In each
instance the method of interconnection, or “coupling,” estab-
lishes some desired electrical communication between two or
more circuit nodes, or terminals. Such coupling may often be
accomplished using a number of circuit configurations, as
will be understood by those of skill in the art. Therefore, the
spirit and scope of the appended claims should not be limited
to the foregoing description. Only those claims specifically
reciting “means for” or “step for” should be construed in the
manner required under the sixth paragraph of 35 U.S.C. §112.

What is claimed is:

1. A module, comprising:

a processor to receive data to be processed from a first
memory on the module that is associated with a first
aperture and to receive data to be processed from a
second memory on the module that is associated with a
second aperture, the processor to initiate accesses of the
first memory on the module, the processor to initiate
accesses of the second memory on the module;

a memory interface configured to interface with a memory
controller of a host system, the memory interface includ-
ing a memory data interface and a command interface,
the memory data interface to operate bidirectionally, the
command interface to operate unidirectionally, the host
to provide the data to be processed to the memory con-
troller for provision to the module via the memory inter-
face, the module configurable to provide the processor
with access to the first memory concurrent with the
memory controller accessing the second memory, and
the module configurable to provide the processor with
access to the second memory concurrent with the
memory controller accessing the first memory.

2. The module of claim 1, wherein the first memory corre-
sponds to a first rank of memory devices on the module and
the second memory corresponds to a second rank of memory
devices on the module.

3. The module of claim 2, wherein the memory controlleris
to use the command interface to signal to the module that the
processor can access the first memory and to signal to the
module that the processor can access the second memory.

4. The module of claim 3, wherein the command interface
is to signal that the processor can access the first memory by
issuing a command to place the first memory in a self-refresh
mode.

5. The module of claim 4, wherein the memory interface
does not pass the command to place the first memory into the
self-refresh mode to the first memory.

6. The module of claim 1, wherein when the processor is
provided with access to the first memory the processor is
denied access to the second memory.
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7. The module of claim 6, wherein the memory controller
configures the module to provide the processor with access to
the first memory and deny the processor access to the second
memory.

8. A dual-inline memory module (DIMM), comprising:

a parallel module interface configured to interface with a
memory controller of a host system, the parallel module
interface including a memory data interface and a
memory command/address interface, the memory data
interface to operate bidirectionally, the memory com-
mand/address interface to operate unidirectionally, the
host to provide, to the memory controller for provision
to the module, first data intended to be stored in a first
memory address range of the module and second data
intended to be stored in a second memory address range
of the module; and,

means to provide a processor on the module with access to
the first memory address range while the memory con-
troller concurrently accesses the second memory
address range, and to provide the processor on the mod-
ule with access to the second memory address range
while the memory controller concurrently accesses the
first memory address range, the processor to initiate
accesses of the first memory address range, and the
processor to initiate accesses of the second memory
address range.

9. The module of claim 8, wherein the first memory address
range and the second memory address range access volatile
random access memory (VRAM).

10. The module of claim 9, wherein the first memory
address range and the second memory address range access
different ranks of VRAM.

11. The module of claim 8, wherein the processor is to
access the first memory address range to receive the first data
for processing by the processor and the processor is to access
the second memory address range to receive the second data
for processing by the processor.

12. The module of claim 8, further comprising means to
prevent the processor on the module from accessing the first
memory address range while the memory controller concur-
rently accesses the second memory range and means to pre-
vent the processor on the module from accessing the second
memory address range while the memory controller concur-
rently accesses the first memory range.

13. The module of claim 12, wherein the means to prevent
the processor on the module from accessing the first memory
address range while the memory controller concurrently
accesses the second memory range and the means to prevent
the processor on the module from accessing the second
memory address range while the memory controller concur-
rently accesses the first memory range are activated by com-
mands from the memory controller.

14. The module of claim 12, wherein the means to prevent
the processor on the module from accessing the first memory
address range while the memory controller concurrently
accesses the second memory range is activated by a command
from the memory controller that places the second memory
address range in a self-refresh mode.

15. A system, comprising:

a central processing unit (CPU) with a memory controller
configured to direct delivery of module data from the
CPU to module memory using parallel data channels;
and,

a dual-inline memory module (DIMM) configured to
receive the module data from the CPU, including:

a processor to receive the module data to be processed
from a first memory on the module that is associated
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with a first aperture and to receive the module data to
be processed from a second memory on the module
that is associated with a second aperture, the proces-
sor initiate accesses of the first memory on the mod-
ule, the processor to initiate accesses of the second
memory on the module; and,

a memory interface configured to interface with the

memory controller using parallel data channels, the
memory interface including a memory data interface
and a memory command/address interface, the
memory data interface to operate bidirectionally, the
memory command/address interface to operate uni-
directionally, the host to provide the data to be pro-
cessed to the memory controller for provision to the
module via the memory interface, the module config-
urable to provide the processor with access to the first
memory concurrent with the memory controller
accessing the second memory, and the module con-
figurable to provide the processor with access to the
second memory concurrent with the memory control-
ler accessing the first memory.
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16. The system of claim 15, wherein the first memory
corresponds to a first rank of memory devices on the module
and the second memory corresponds to a second rank of
memory devices on the module.

17. The system of claim 16, wherein the memory controller
is to use the command/address interface to signal to the mod-
ule that the processor can access the first memory and to
signal to the module that the processor can access the second
memory.

18. The system of claim 15, wherein the command/address
interface is to receive a command to place the first memory in
a self-refresh mode that signals, the command to signal the
module that the processor can access the first memory.

19. The system of claim 15, wherein the first memory and
the second memory are volatile random access memory
(VRAM).

20. The module of claim 19, wherein the first memory and
the second memory correspond to different ranks of VRAM.
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